【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動(dòng)點(diǎn)M,N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
【答案】
(1)解:∵如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.
∴根據(jù)勾股定理,得AB= 。(1)以A,P,M為頂點(diǎn)的三角形與△ABC相似,分兩種情況:①當(dāng)△AMP∽△ABC時(shí), ,即 ,解得 ; ②當(dāng)△APM∽△ABC時(shí), ,即 ,解得t=0(不合題意,舍去)。
綜上所述,當(dāng) 時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似
(2)解:存在某一時(shí)刻t,使四邊形APNC的面積S有最小值.
理由如下:假設(shè)存在某一時(shí)刻t,使四邊形APNC的面積S有最小值。如圖,過點(diǎn)P作PH⊥BC于點(diǎn)H.則PH∥AC
∴ ,即 。
∴ ∴
∵ >0,
∴S有最小值。當(dāng)t= 時(shí),S最小值= . 答:當(dāng)t= 時(shí),四邊形APNC的面積S有最小值,其最小值是
【解析】(1)根據(jù)△AMP∽△ABC,可得成比例的線段,問題得解;(2)首先假設(shè)存在某一時(shí)刻t,使四邊形APNC的面積S有最小值,然后把四邊形APNC的面積表示出來,其面積是一個(gè)二次函數(shù),再根據(jù)二次函數(shù)的性質(zhì)求解。
【考點(diǎn)精析】利用二次函數(shù)的最值和相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)A是反比例函數(shù)y=-圖象上一點(diǎn),過點(diǎn)A作x軸的垂線,垂足為B點(diǎn),若OA=2,則△AOB的周長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠BAD、∠ADC的平分線AE、DF分別與線段BC相交于點(diǎn)E、F,∠DFC=30°,AE與DF相交干點(diǎn)G,則∠AEC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=2cm,BC=4cm,點(diǎn)P按照順時(shí)針方向由點(diǎn)A運(yùn)動(dòng)到點(diǎn)D,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為圖中點(diǎn)P、B、D圍成的圖形的面積為
(1)寫出點(diǎn)P、B、D圍成的圖形的面積與之間的關(guān)系式和自變量的取值范圍;
(2)當(dāng)取何值時(shí),點(diǎn)P、B、D圍成的圖形的面積等于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題,正確的有( )
①經(jīng)過三個(gè)點(diǎn)一定可以作圓;②任意一個(gè)三角形一定有一個(gè)外接圓,并且只有一個(gè)外接圓;③在同圓或等圓中,相等的弦則所對的弧相等;④正多邊形既是中心對稱圖形又是軸對稱圖形;⑤三角形的內(nèi)心到三角形各邊的距離相等.
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)的坐標(biāo)分別為(-6,7)、(-3,0)、(0,3).
(1)畫出△ABC,并求△ABC的面積.
(2)在平面直角坐標(biāo)系中平移△ABC,使點(diǎn)C經(jīng)過平移后的對應(yīng)點(diǎn)為C'(5,4),平移后△ABC得到△A'B'C',畫出平移后的△A'B'C',并寫出點(diǎn)A',B'的坐標(biāo)
(3)P(-3,m)為△ABC中一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向上平移6個(gè)單位得到點(diǎn)Q(n,-3),則m= n=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是AB的中點(diǎn),E是CD的中點(diǎn),過點(diǎn)C作CF∥AB交AE的延長線于點(diǎn)F,連結(jié)BF.
(1)求證:四邊形BDCF是平行四邊形;
(2)當(dāng)AC=BC時(shí),判斷四邊形BDCF是哪種特殊的平行四邊形,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com