【題目】如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C.∠DAB=∠B=30°.
(1)直線BD是否與⊙O相切?為什么?
(2)連接CD,若CD=5,求AB的長.
【答案】
(1)解:直線BD與⊙O相切.理由如下:
如圖,連接OD,
∵∠DAB=∠B=30°,∴∠ADB=120°,
∵OA=OD,∴∠ODA=∠OAD=30°,
∴∠ODB=∠ADB﹣∠ODA=120°﹣30°=90°.
所以直線BD與⊙O相切
(2)解:連接CD,
∠COD=∠OAD+∠ODA=30°+30°=60°,
又OC=OD
∴△OCD是等邊三角形,
即:OC=OD=CD=5=OA,
∵∠ODB=90°,∠B=30°,
∴OB=10,
∴AB=AO+OB=5+10=15.
【解析】(1)連接OD,通過計算得到∠ODB=90°,證明BD與⊙O相切.(2)△OCD是邊長為5的等邊三角形,得到圓的半徑的長,然后求出AB的長.
【考點精析】解答此題的關鍵在于理解含30度角的直角三角形的相關知識,掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半,以及對圓周角定理的理解,了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)相交于點A,且點A的橫坐標為4.
(1)求點A的坐標及一次函數(shù)的解析式;
(2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點B、C,求線段BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,按照三視圖確定該幾何體的側面積是(圖中尺寸單位:cm)( )
A.40πcm2
B.65πcm2
C.80πcm2
D.105πcm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù) ,當自變量x取m時對應的值大于0,當自變量x分別取m﹣1、m+1時對應的函數(shù)值為y1、y2 , 則y1、y2必須滿足( )
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:
t | 1 | 2 | 3 |
y2 | 21 | 44 | 69 |
(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克和6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克? (說明:毛利潤=銷售總金額﹣進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“愛滿揚州”慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成統(tǒng)計圖.
(1)這50名同學捐款的眾數(shù)為 元,中位數(shù)為 元。
(2)求這50名同學捐款的平均數(shù)。
(3)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com