【題目】如圖:扇形DOE的圓心角為直角,它的半徑為2cm,正方形OABC內(nèi)接于扇形,點A、B、C分別在OE、 、OD上,過E作EF⊥OE交CB的延長線于F,則圖中陰影部分的面積為cm2

【答案】2 ﹣2
【解析】解:連接OB.

由題意可知OD=OE=2,OC=BC=OA=AB= ,
S=S扇形OBD﹣SOBC+S梯形OBFE﹣S扇形OBE= =2 ﹣2.
所以答案是2 ﹣2.
【考點精析】認真審題,首先需要了解正多邊形和圓(圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等),還要掌握扇形面積計算公式(在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進一批紀(jì)念冊,每本進價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的三個頂點的坐標(biāo)分別為O(0,0),A(50),B(24)

(1)OAB的面積;

(2)OA兩點的位置不變,P點在什么位置時,OAP的面積是OAB面積的2倍?

(3)B(2,4),O(00)不變,M點在x軸上,M點在什么位置時,OBM的面積是OAB面積的2倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求兩個正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個正整數(shù)最大公約數(shù)的一種方法——更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也,以等數(shù)約之.”意思是說,要求兩個正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時,此時的差(或減數(shù))即為這兩個正整數(shù)的最大公約數(shù).例如:求91與56的最大公約數(shù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某巡警車在一條南北大道上巡邏,某天巡警車從崗?fù)?/span>處出發(fā),規(guī)定向北方向為正,當(dāng)天行駛紀(jì)錄如下(單位:千米)

10,﹣9+7,﹣15+6,﹣5+4,﹣2

1)最終巡警車是否回到崗?fù)?/span>處?若沒有,在崗?fù)ず畏,距崗(fù)ざ噙h?

2)摩托車行駛1千米耗油0.2升,油箱有油10升,夠不夠?若不夠,途中還需補充多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△AOB,AO=AB=5,OB=6.以O(shè)為原點,以O(shè)B邊所在的直線為x軸,以垂直于OB的直線為y軸建立平面直角坐標(biāo)系.

(1)求點A的坐標(biāo);

(2)若點A關(guān)于y軸的對稱點為M,點N的橫、縱坐標(biāo)之和等于點A的橫坐標(biāo),請在圖中畫出一個滿足條件的△AMN,并直接在圖上標(biāo)出點M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標(biāo)為(3,0),OB=OC,OC=3OA.

(1)求這個二次函數(shù)的表達式;
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(n,-2),B(1,4)是一次函數(shù) y=kx+b的圖象和反比例函數(shù) 的圖象的兩個交點,直線AB與y軸交于點C.

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)求△AOC的面積;

(3)觀察圖象,直接寫出反比例函數(shù)值大于一次函數(shù)值x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于點,的橫坐標(biāo)是

4,點在反比例函數(shù)的圖像上.

(1)求反比例函數(shù)的表達式;

(2)觀察圖像回答:當(dāng)為何值時, ;

(3)的面積.

查看答案和解析>>

同步練習(xí)冊答案