【題目】已知一元二次方程x2+(2m+1)x+m2﹣1=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,試求m的取值范圍;
(2)若拋物線y=x2+(2m+1)x+m2﹣1與直線y=x+m沒有交點(diǎn),試求m的取值范圍;
(3)求證:不論m取何值,拋物線y=x2+(2m+1)x+m2﹣1圖象的頂點(diǎn)都在一條定直線上.
【答案】(1)m>﹣.(2)m<﹣1.(3)詳見解析.
【解析】
(1)根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;
(2)將一次函數(shù)解析式代入二次函數(shù)解析式中整理后可得出關(guān)于x的一元二次方程,由拋物線與直線無交點(diǎn),可得出根的判別式△<0,進(jìn)而可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;
(3)利用二次函數(shù)的性質(zhì)可得出拋物線的頂點(diǎn)坐標(biāo),設(shè)x=﹣m﹣,y=﹣m﹣,則m=﹣x﹣,將m=﹣x﹣代入y中即可得出結(jié)論.
解:(1)∵一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=(2m+1)2﹣4(m2﹣1)>0,
解得:m>﹣.
(2)將y=x+m代入y=x2+(2m+1)x+m2﹣1,得:x+m=x2+(2m+1)x+m2﹣1,
整理,得:x2+2mx+m2﹣m﹣1=0.
∵拋物線y=x2+(2m+1)x+m2﹣1與直線y=x+m沒有交點(diǎn),
∴△=(2m)2﹣4(m2﹣m﹣1)<0,
解得:m<﹣1.
(3)證明:∵拋物線解析式為y=x2+(2m+1)x+m2﹣1,
∴a=1,b=2m+1,c=m2﹣1,
∴拋物線的頂點(diǎn)坐標(biāo)為(﹣,),即(﹣m﹣,﹣m﹣).
設(shè)x=﹣m﹣,y=﹣m﹣,則m=﹣x﹣,
∴y=﹣m﹣=x+﹣=x﹣.
∴不論m取何值,拋物線y=x2+(2m+1)x+m2﹣1圖象的頂點(diǎn)都在一條定直線y=x﹣上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=AD,BC=()AD, 以AD為邊作等邊三角形ADE,則∠BEC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(0,1),B(3,3),C(1,3).
(1)畫出△ABC關(guān)于點(diǎn)O的中心對(duì)稱圖形△A1B1C1;
(2)畫出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB2C2;直接寫出點(diǎn)C2的坐標(biāo)為 ;
(3)求在△ABC旋轉(zhuǎn)到△AB2C2的過程中,點(diǎn)C所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(k為常數(shù),且)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C過點(diǎn)B的直線與拋物線的另一交點(diǎn)為D.
若點(diǎn)D的橫坐標(biāo)為,求拋物線的函數(shù)表達(dá)式;
過D點(diǎn)向x軸作垂線,垂足為點(diǎn)M,連結(jié)AD,若,求點(diǎn)D的坐標(biāo);
若在第一象限的拋物線上有一點(diǎn)P,使得以點(diǎn)A,B,P為頂點(diǎn)的三角形與相似,請(qǐng)直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3…如此進(jìn)行下去,則C2019的頂點(diǎn)坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)透明的布袋里裝有2個(gè)紅球,個(gè)白球,它們除顏色外其余都相同,已知任意摸出1個(gè)球是紅球的概率為.
(1)求的值;
(2)先任意摸出1個(gè)球,記下顏色后不放回,攪勻,再摸出一個(gè)球,請(qǐng)利用畫樹狀圖或列表的方法求出連續(xù)兩次都摸出紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小儒在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考:
(1)他認(rèn)為該定理有逆定理,即“如果一個(gè)三角形某條邊上的中線等于該邊長(zhǎng)的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立,你能幫小儒證明一下嗎?如圖①,在△ABC中,AD是BC邊上的中線,若AD=BD=CD,求證:∠BAC=90°.
(2)接下來,小儒又遇到一個(gè)問題:如圖②,已知矩形ABCD,如果在矩形外存在一點(diǎn)E,使得AE⊥CE,求證:BE⊥DE,請(qǐng)你作出證明,可以直接用到第(1)問的結(jié)論.
(3)在第(2)問的條件下,如果△AED恰好是等邊三角形,直接用等式表示出此時(shí)矩形的兩條鄰邊AB與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:①常數(shù)m<﹣2;②若A(﹣1,h),B(2,k)在圖象上,則h<k;③y隨x的增大而減;④若P(x,y)在圖象上,則P'(﹣x,﹣y)也在圖象上.其中正確的是( 。
A. ①②B. ③④C. ②③D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com