【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,﹣),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊)

(1)求拋物線的解析式及A,B兩點的坐標(biāo);

(2)若(1)中拋物線的對稱軸上有點P,使△ABP的面積等于△ABC的面積的2倍,求出點P的坐標(biāo);

(3)在(1)中拋物線的對稱軸l上是否存在一點Q,使AQ+CQ的值最小?若存在,求AQ+CQ的最小值;若不存在,請說明理由.

【答案】(1)拋物線的解析式為y=(x﹣4)2,A(2,0),B(6,0);

(2)點P坐標(biāo)(4,4)或(4,﹣4);

(3)存在,QA+QC的最小值為

【解析】(1)拋物線的頂點坐標(biāo)為(4,﹣),可以假設(shè)拋物線為y=a(x﹣4)2把點(0,2)代入得到a=,

∴拋物線的解析式為y=(x﹣4)2

令y=0得到(x﹣4)2=0,解得x=2或6,

∴A(2,0),B(6,0).

(2)設(shè)P(4,m),

由題意:4|m|=2××4×2,解得m=±4,

∴點P坐標(biāo)(4,4)或(4,﹣4).

(3)存在.理由如下:

∵A、B關(guān)于對稱軸對稱,連接CB交對稱軸于Q,連接QA,此時QA+QC最短(兩點之間線段最短),

∴QA+QC的最小值=QA+QC=QB+QC=BC==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校初三年級400名學(xué)生的體重情況,從中抽查了50名學(xué)生的體重進行統(tǒng)計分析,在這個問題中,總體是(
A.400名學(xué)生的體重
B.被抽取的50名學(xué)生
C.400名學(xué)生
D.被抽取的50名學(xué)生的體重

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個數(shù)的平方根與它的立方根完全相同.則這個數(shù)是(
A.1
B.﹣1
C.0
D.±1,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是(
A.9
B.11
C.13
D.11或13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點A(﹣3,﹣2)向上平移2個單位,再向右平移2個單位到點B,則點B的坐標(biāo)為(
A.(1,0)
B.(1,﹣4)
C.(﹣1,0)
D.(﹣5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E,F(xiàn)分別在BC,AB上,點M在BA的延長線上,且CE=BF=AM,過點M,E分別作NM⊥DM,NE⊥DE交于N,連接NF.

(1)求證:DE⊥DM;

(2)猜想并寫出四邊形CENF是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡求值
(1)
(2)( ﹣2)2+
(3) +
(4) +(1+ )(1﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A,B,C是數(shù)軸上三點,O為原點,點C對應(yīng)的數(shù)為3,BC=2,AB=6.

(1)求點A,B對應(yīng)的數(shù);

(2)動點M,N分別同時從AC出發(fā),分別以每秒3個單位和1個單位的速度沿數(shù)軸正方向運動.P為AM的中點,Q在CN上,且CQ=CN,設(shè)運動時間為tt > 0).

①求點P,Q對應(yīng)的數(shù)(用含t的式子表示);

②t為何值時OP=BQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人和人之間講友情,有趣的是,數(shù)與數(shù)之間也有相類似的關(guān)系. 若兩個不同的自然數(shù)的所有真因數(shù)(即除了自身以外的正約數(shù))之和相等,我們稱這兩個數(shù)為“親和數(shù)”. 例如:18的約數(shù)有1、2、3、6、9、18,它的真因數(shù)之和1+2+3+6+9=21;51的約數(shù)有1、3、17、51,它的真因數(shù)之和1+3+17=21,所以18和51為“親和數(shù)”. 數(shù)還可以與動物形象地聯(lián)系起來,我們稱一個兩頭(首位與末位)都是的數(shù)為“兩頭蛇數(shù)”.

(1)6的“親和數(shù)”為 ;將一個四位的“兩頭蛇數(shù)”去掉兩頭,得到一個兩位數(shù),它恰好是這個“兩頭蛇數(shù)”的約數(shù),求滿足條件的“兩頭蛇數(shù)”.

(2)已知兩個“親和數(shù)”的真因數(shù)之和都等于15,且這兩個“親和數(shù)”中較大的數(shù)能將一個正中間數(shù)位(百位)上的數(shù)為4的五位“兩頭蛇數(shù)”整除,若這個五位“兩頭蛇數(shù)”的千位上的數(shù)字小于十位上的數(shù)字,求滿足條件的“兩頭蛇數(shù)”.

查看答案和解析>>

同步練習(xí)冊答案