【題目】如圖,已知在RtABC中,ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正確的是( )

A.①②③ B.①②④ C.①③④ D.②③④

【答案】B.

【解析】

試題根據(jù)作圖過程,利用線段垂直平分線的性質(zhì)對各選項進行判斷:

根據(jù)作圖過程可知:PB=CP,

D為BC的中點,PD垂直平分BC,∴①EDBC正確.

∵∠ABC=90°,PDAB.

E為AC的中點,EC=EA,EB=EC.

∴②∠A=EBA正確;EB平分AED錯誤;ED=AB正確.

正確的有①②④.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知數(shù)軸上點A、B分別表示ab,且|b+6|(a9)2互為相反數(shù),O為原點.

(1)a   b   ;

(2)若將數(shù)軸折疊點A與表示﹣10的點重合,則與點B重合的點所表示的數(shù)為   ;

(3)若點MN分別從點A、B同時出發(fā),點M以每秒1個單位長度的速度沿數(shù)軸向左勻速運動,點N以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,N到點A后立刻原速返回,設運動時間為t(t0)秒.M表示的數(shù)是   (用含t的代數(shù)式表示)t為何值時,2MOMAt為何值時,點MN相距3個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一塊三角形的空地,其三邊的長分別為20m,30m40m,現(xiàn)要把它分成面積為234的三部分,分別種植不同的花草,請你設計一種方案,并簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,邊長為2的正方形ABCD中,點P在AB邊上(不與點A、B重合),點Q在BC邊上(不與點B、C重合)
第一次操作:將線段PQ繞點Q順時針旋轉(zhuǎn),當點P落在正方形上時,記為點M;
第二次操作:將線段QM繞點M順時針旋轉(zhuǎn),當點Q落在正方形上時,記為點N;
依次操作下去…

(1)如圖2,經(jīng)過兩次操作后得到△PQD、△PQD的形狀是 , 求此時線段PQ的長 ;
(2)若經(jīng)過三次操作可得到四邊形PQMN.
①請直接判斷四邊形PQMN的形狀,直接寫出此時此刻AP與BQ的數(shù)量關系;
②以①中的結論為前提,直接寫出四邊形PQMN的面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已如點A1,1),B-1,1),C-1-2),D1,-2),把一根長為2019個單位長度沒有彈性的細線(線的相細忽略不計)的一端固定在A處,并按的規(guī)律緊繞在四邊形ABCD的邊上,則細線的另一端所在位置的點的坐標是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解七年級學生體育測試情況,以七年級(1)班學生的體育測試成績?yōu)闃颖荆?/span>A,B,C,D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請你結合圖中所給信息解答下列問題:

(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)

1)計算D級的學生人數(shù),并把條形統(tǒng)計圖補充完整;

2)計算扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù):

3)若該校七年級有600名學生,請估計體育測試中B級學生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABBE于點B,DEBE于點E.

(1)若∠A=D,AB=DE,則ABCDEF全等的理由是____;

(2)若∠A=D,BC=EF,則ABCDEF全等的理由是_________;

(3)AB=DE,BC=EF,則ABCDEF全等的理由是_______;

(4)AB=DE,AC=DF,則ABCDEF全等的理由是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫推理理由:

已知:如圖,D,F,E分別是BC,AC,AB上的點,DFAB,DEAC,

試說明∠EDF=A.

解:∵DFAB(已知),

∴∠A+AFD=180°(____________________).

DEAC(已知),

∴∠AFD+EDF=180°(____________________).

∴∠A=EDF(____________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結果保留整數(shù))?
(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)

查看答案和解析>>

同步練習冊答案