【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),AB=8,BE=BC=10,動(dòng)點(diǎn)P在線段BE上(與點(diǎn)B、E不重合),點(diǎn)Q在BC的延長(zhǎng)線上,PE=CQ,PQ交EC于點(diǎn)F,PG∥BQ交EC于點(diǎn)G,設(shè)PE=x.

(1)求證:△PFG≌△QFC
(2)連結(jié)DG.當(dāng)x為何值時(shí),四邊形PGDE是菱形,請(qǐng)說(shuō)明理由;

【答案】
(1)證明:∵BC=BE,∴∠BCE=∠PEC,

∵PG∥BQ,

∴∠BCE=∠PGE,∠Q=∠FPG,∠QCF=∠PGF,

∴∠PGE=∠PEC,

∴PE=PG,

∵PE=CQ,

∴PG=CQ,

∴△PFG≌△QFC (ASA).


(2)解:結(jié)論:當(dāng)x=4時(shí),四邊形PGDE是菱形.

理由如下:連結(jié)DG

∵四邊形ABCD是矩形,

∴AD∥BC,

AB=CD=8,AD=BC=BE=10,

在Rt△ABE中,AE= ,

∴DE=AD﹣AE=10﹣6=4,

由(1)知PG=PE=x=4,

∴PG=DE,

∵PG∥BQ,AD∥BC,

∴PG∥DE,

∴四邊形PGDE是平行四邊形,

∵PG=PE=4,

∴四邊形PGDE是菱形.

;(3)作PH⊥EC于點(diǎn)H.探究:

①點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段HF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求HF的長(zhǎng)度;

②當(dāng)x為何值時(shí),△PHF與△BAE相似.

解:①不變化.

理由:在Rt△ABE中,CE= ,

∵PG=PE,PH⊥EC,

∴EH=HG= EG(等腰三角形“三線合一”),

∵△PFG≌△QFC,

∴CF=GF= CG,

∴HF=HG+FG= EG+ CG= CE=

②∵PG∥DE,

∴∠DEC=∠PGH,

在Rt△PGH中,PH=PG×sin∠PGH=x×sin∠DEC=x× =x× =

分兩種情況討論:

(Ⅰ)若△PHF∽△EAB,則 ,

,

,

∴當(dāng) 時(shí),△PHF∽△BAE.

(II)若△PHF∽△BAE,則 ,

,

,

∴當(dāng) 時(shí),△PHF與△BAE相似.


【解析】(1)只要證明PG=CQ,即可根據(jù)AAS或ASA證明;(2)結(jié)論:當(dāng)x=4時(shí),四邊形PGDE是菱形.首先證明四邊形PGDE是平行四邊形,由PG=PE=4,即可推出四邊形PGDE是菱形;(3)①不變化.可以證明:HF=HG+FG= EG+ CG= CE= ;②分兩種情形討論(Ⅰ)若△PHF∽△EAB,則 ,(II)若△PHF∽△BAE,則 ,分別列出方程即可解決問(wèn)題;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線AC上,且AE=CF.求證:

(1)DE=BF;

(2)四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知1=2,要得到ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)對(duì)2016年微信用戶的職業(yè)頒布進(jìn)行了隨機(jī)抽樣調(diào)查(職業(yè)說(shuō)明:A:黨政機(jī)關(guān)、軍隊(duì),B:事業(yè)單位,C:企業(yè),D:自由職業(yè)及人體戶,E:學(xué)生,F(xiàn):其他),圖1和圖2是根據(jù)調(diào)查數(shù)據(jù)繪制而成的不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)該機(jī)構(gòu)共抽查微信用戶人;
(2)在圖1中,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在圖2中,“D”用戶所對(duì)應(yīng)扇形的圓心角度數(shù)為度;
(4)2016年微信用戶約有7.5億人,估計(jì)“E”用戶大約有億人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,方格圖中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A、B、C都是格點(diǎn).

(1)畫出△ABC關(guān)于直線MN對(duì)稱的△A1B1C1;

(2)直接寫出AA1的長(zhǎng)度;

(3)如圖2,A、C是直線MN同側(cè)固定的點(diǎn),D是直線MN上的一個(gè)動(dòng)點(diǎn),在直線MN上畫出點(diǎn)D,使AD+DC最。ūA糇鲌D痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次期中考試中A、BCD、E五位同學(xué)的數(shù)學(xué)、英語(yǔ)成績(jī)等有關(guān)信息如下表所示:


A

B

C

D

E

平均分

標(biāo)準(zhǔn)差

數(shù)學(xué)

71

72

69

68

70



英語(yǔ)

88

82

94

85

76

85


1】求這五位同學(xué)在本次考試中數(shù)學(xué)成績(jī)的平均分和英語(yǔ)成績(jī)的標(biāo)準(zhǔn)差;

2】為了比較不同學(xué)科考試成績(jī)的好與差,采用標(biāo)準(zhǔn)分是一個(gè)合理的選擇,標(biāo)準(zhǔn)分的計(jì)算公式是標(biāo)準(zhǔn)分=(個(gè)人成績(jī)-平均成績(jī)成績(jī)標(biāo)準(zhǔn)差. 從標(biāo)準(zhǔn)分看,標(biāo)準(zhǔn)分大的考試成績(jī)更好,請(qǐng)問(wèn)A同學(xué)在本次考試中,數(shù)學(xué)與英語(yǔ)哪個(gè)學(xué)科考得更好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是交警在一個(gè)路口統(tǒng)計(jì)的某個(gè)時(shí)段來(lái)往車輛的車速(單位:千米/小時(shí))情況,則下列關(guān)于車速描述錯(cuò)誤的是( )

A. 平均數(shù)是23 B. 中位數(shù)是25 C. 眾數(shù)是30 D. 方差是129

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A-1,-2),B11),C-3,1),A1B1C1ABC向下平移2個(gè)單位,向右平移3個(gè)單位得到的.

1)寫出點(diǎn)A1、B1C1的坐標(biāo),并在右圖中畫出A1B1C1;

2)求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點(diǎn)A1 , 得∠A1;∠A1BC和∠A1CD的平分線交于點(diǎn)A2 , 得∠A2;…∠A2016BC和∠A20l6CD的平分線交于點(diǎn)A2017 , 則∠A2017=°.

查看答案和解析>>

同步練習(xí)冊(cè)答案