【題目】如圖,AB是半圓的直徑,點(diǎn)O是圓心,點(diǎn)C是OA的中點(diǎn),CD⊥OA交半圓于點(diǎn)D,點(diǎn)E是的中點(diǎn),連接AE、OD,過點(diǎn)D作DP∥AE交BA的延長(zhǎng)線于點(diǎn)P.
(1)求∠AOD的度數(shù);
(2)求證:PD是半圓O的切線.
【答案】(1)解:∵點(diǎn)C時(shí)OA的中點(diǎn),∴OC=OA=OD
∵CD⊥OA,∴∠OCD=90°。
在Rt△OCD中,cos∠COD=
∴∠COD=60°,即∠AOD=60°。
(2)證明:連結(jié)OE,∵點(diǎn)E是的中點(diǎn),
∴,
∴∠BOE=∠DOE=∠DOB=(180°-∠COD)=(180°-60°)=60°。
∵OA=OE,∴∠EAO=∠AEO,又∠EAO+∠AEO=∠EOB=60°
∴∠EAO=30°,
∴PD∥AE,
∴∠P=∠EAO=30°。
由(1)知∠AOD=60°,∴∠PDO=180°-(∠P+∠POD)=180°-(30°+60°)=90°,
∴PD是半圓O的切線。
【解析】
試題(1)根據(jù)CO與DO的數(shù)量關(guān)系,即可得出∠CDO的度數(shù),進(jìn)而求出∠AOD的度數(shù);
(2)利用點(diǎn)E是的中點(diǎn),進(jìn)而求出∠EAB=30°,即可得出∠AFO=90°,即可得出答案.
試題解析:(1)∵AB是半圓的直徑,點(diǎn)O是圓心,點(diǎn)C是OA的中點(diǎn),
∴2CO=DO,∠DCO=90°,
∴∠CDO=30°,
∴∠AOD=60°;
(2)如圖,連接OE,
∵點(diǎn)E是的中點(diǎn),
∴,
∵由(1)得∠AOD=60°,
∴∠DOB=120°,
∴∠BOE=60°,
∴∠EAB=30°,
∴∠AFO=90°,
∵DP∥AE,
∴PD⊥OD,
∴直線PD為⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=900,AD是∠BAC的角分線.
(1)以AB上的一點(diǎn)O為圓心,AD為弦在圖中作出⊙O.(不寫作法,保留作圖痕跡);
(2)試判斷直線BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (2013年四川南充3分) 如圖1,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P,點(diǎn)Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BE→ED→DC 運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s,設(shè)P,Q出發(fā)t秒時(shí),△BPQ的面積為ycm,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時(shí),;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結(jié)論個(gè)數(shù)為【 】
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn)(A在B的左側(cè)),與軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求此拋物線的解析式.
(2)以點(diǎn)B為直角頂點(diǎn)作直角三角形BCE,斜邊CE與拋物線交于點(diǎn)P,且CP=EP,求點(diǎn)P的坐標(biāo).
(3)將△BOC繞著它的頂點(diǎn)順時(shí)針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)的角度為α,旋轉(zhuǎn)后的圖形為△BO’C’.當(dāng)
旋轉(zhuǎn)后的△BO’C’有一邊與BD重合時(shí),求△BO’C’不在BD上的頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,并解決問題.
(1)已知在△ABC中,∠A=60°,圖1-圖3的△ABC的內(nèi)角平分線或外角平分線交于點(diǎn)O,請(qǐng)直接求出下列角度的度數(shù).
如圖1,∠O= ; 如圖2,∠O= ; 如圖3,∠O= ;如圖4,∠ABC,∠ACB的三等分線交于點(diǎn)O1,O2,連接O1O2,則∠BO2O1= .
(2)如圖5,點(diǎn)O是△ABC兩條內(nèi)角平分線的交點(diǎn),求證:∠O=90°+∠A.
(3)如圖6,△ABC中,∠ABC的三等分線分別與∠ACB的平分線交于點(diǎn)O1,O2,若∠1=115°,∠2=135°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某網(wǎng)站調(diào)查,2014年網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其他共五類.根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:
根據(jù)所給信息解答下列問題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)若菏澤市約有880萬(wàn)人口,請(qǐng)你估計(jì)最關(guān)注環(huán)保問題的人數(shù)約為多少萬(wàn)人?
(3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小慧沿圖l中的風(fēng)景區(qū)游覽,約好在飛瀑見面.小聰駕駛電動(dòng)汽車從賓館出發(fā),小慧也于同一時(shí)間騎電動(dòng)自行車從塔林出發(fā).圖2中的圖像分別表示兩人離賓館的路程與時(shí)間的函數(shù)關(guān)系,試結(jié)合圖中信息回答:
(1)飛瀑與賓館相距__________,小聰出發(fā)時(shí)與賓館的距離_________;
(2)若小聰出發(fā)后,速度變?yōu)樾』鄣?/span>2倍,則小聰追上小慧時(shí),他們是否已經(jīng)過了草甸?
(3)當(dāng)出發(fā)多長(zhǎng)時(shí)間時(shí),兩人相距?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com