【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為

【答案】
【解析】解:設(shè)第n個(gè)大正方形的邊長(zhǎng)為an , 則第n個(gè)陰影小正方形的邊長(zhǎng)為 an , 當(dāng)x=0時(shí),y=﹣ x+ = ,
= a1+ a1 ,
∴a1=
∵a1=a2+ a2
∴a2= ,
同理可得:a3= a2 , a4= a3 , a5= a4 , …,
∴an= a1=
∴第n個(gè)陰影小正方形的面積為 = =
故答案為:
設(shè)第n個(gè)大正方形的邊長(zhǎng)為an , 則第n個(gè)陰影小正方形的邊長(zhǎng)為 an , 根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出直線y=﹣ x+ 與y軸的交點(diǎn)坐標(biāo),進(jìn)而即可求出a1的值,再根據(jù)相似三角形的性質(zhì)即可得出an= a1= ,結(jié)合正方形的面積公式即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CF,連接EF.

(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B(4,2),BA⊥x軸于A.

(1)畫出將△OAB繞原點(diǎn)旋轉(zhuǎn)180°后所得的△OA1B1 , 并寫出點(diǎn)B1的坐標(biāo);
(2)將△OAB平移得到△O2A2B2 , 點(diǎn)A的對(duì)應(yīng)點(diǎn)是A2(2,﹣4),點(diǎn)B的對(duì)應(yīng)點(diǎn)B2在坐標(biāo)系中畫出△O2A2B2;并寫出B2的坐標(biāo);
(3)△OA1B1與△O2A2B2成中心對(duì)稱嗎?若是,請(qǐng)直接寫出對(duì)稱中心點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小俊在A處利用高為1.5米的測(cè)角儀AB測(cè)得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測(cè)得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2 , 以直線l1上的點(diǎn)A為圓心、適當(dāng)長(zhǎng)為半徑畫弧,分別交直線l1、l2于點(diǎn)B、C,連接AC、BC.若∠ABC=67°,則∠1=(
A.23°
B.46°
C.67°
D.78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店購(gòu)進(jìn)一批秋衣,價(jià)格為每件30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每件60元,不低于每件30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100.在銷售過程中,每天還要支付其他費(fèi)用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)求該服裝店銷售這批秋衣日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)當(dāng)銷售單價(jià)為多少元時(shí),該服裝店日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長(zhǎng)為16cm,則四邊形ABFD的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)相交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4.

(1)求點(diǎn)A的坐標(biāo)及一次函數(shù)的解析式;
(2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B、C,求線段BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案