【題目】如圖,在梯形中,,,

1)求線段的長;

2)聯(lián)結(jié),交對角線于點(diǎn),求的余切值.

【答案】1;(2

【解析】

1)作BE垂直ACE,由BC求出BE的長,再根據(jù)BE的長求出AE的長,即可求出AC的長.

2)由題意做OP垂直BCP,根據(jù)三角形相似,求出OC的長,再根據(jù)求出OP,PC即可求出∠OBC的余切,即的余切值.

1

BE垂直ACE,

,BC=5,

EC=3,

由勾股定理可得:BE=4,

∠BAC=45°

AE=BE,

AE=4,

AC=AE+EC=4+3=7,

AC的長為7

BC求出BE的長,再根據(jù)BE的長求出AE的長,即可求出AC的長.

2

由題意作圖,

ADBC,

∠OBC=ADO

AO:OC=AD:BC(平行線分線段成比例),

AO:OC=25

AC=7,

OC=5

OP垂直BCP,

PC=3,

由勾股定理可得:OP=4,

∵BC=5,

∴BP=2,

的余切值為==,

的余切值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對二次函數(shù)yx2+2mx+1,當(dāng)0x≤4時函數(shù)值總是非負(fù)數(shù),則實(shí)數(shù)m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,點(diǎn)C、E是⊙O上的兩點(diǎn),CE=CB,,延長AE交BC的延長線于點(diǎn)F.

(1)求證:CD是⊙O的切線;

(2)求證:CE=CF

(3)若BD=1,,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面內(nèi)有一點(diǎn)的三個頂點(diǎn)的距離分別為、、,若有,則稱點(diǎn)關(guān)于點(diǎn)的勾股點(diǎn).

1)如圖2,在的網(wǎng)格中,每個小正方形的邊長均為1,點(diǎn)、、、、均在小正方形的頂點(diǎn)上,則點(diǎn)E關(guān)于點(diǎn)B的勾股點(diǎn).

2)如圖3,是矩形內(nèi)一點(diǎn),且點(diǎn)關(guān)于點(diǎn)的勾股點(diǎn),

①求證:;

②若,,求的度數(shù).

3)如圖3,矩形中,,,是矩形內(nèi)一點(diǎn),且點(diǎn)關(guān)于點(diǎn)的勾股點(diǎn).

①當(dāng)時,求的長;

②直接寫出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)C、D是線段AB同側(cè)兩點(diǎn),且ACBD,∠CAB=∠DBA,連接BC,AD交于點(diǎn) E

1)求證:AEBE;

2)如圖2,△ABF與△ABD關(guān)于直線AB對稱,連接EF

判斷四邊形ACBF的形狀,并說明理由;

若∠DAB30°,AE5,DE3,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC邊長是定值,點(diǎn)O是它的外心,過點(diǎn)O任意作一條直線分別交AB,BC于點(diǎn)D,E.將BDE沿直線DE折疊,得到B′DE,若B′D,B′E分別交AC于點(diǎn)F,G,連接OF,OG,則下列判斷錯誤的是( 。

A. ADF≌△CGE

B. B′FG的周長是一個定值

C. 四邊形FOEC的面積是一個定值

D. 四邊形OGB'F的面積是一個定值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD,AB=2BC=10,點(diǎn)EAD上一點(diǎn),且AE=AB,點(diǎn)F從點(diǎn)E出發(fā),向終點(diǎn)D運(yùn)動,速度為1cm/s,以BF為斜邊在BF上方作等腰直角BFG,以BG,BF為鄰邊作BFHG,連接AG.設(shè)點(diǎn)F的運(yùn)動時間為t秒.

1)試說明:ABGEBF;

2)當(dāng)點(diǎn)H落在直線CD上時,求t 的值;

3)點(diǎn)FE運(yùn)動到D的過程中,直接寫出HC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AC平分∠DAB,直線DCAB的延長線相交于點(diǎn)P,ADPC延長線垂直,垂足為點(diǎn)D,CE平分∠ACB,交AB于點(diǎn)F,交O于點(diǎn)E
1)求證:PC與⊙O相切;
2)求證:PC=PF;
3)若AC=8,tanABC=,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,的外接圓,為直徑,的平分線交O于點(diǎn)D,過點(diǎn)D,分別交,的延長線于點(diǎn)EF

1)求證:的切線;

2)填空:

①當(dāng)的度數(shù)為_________時,四邊形為菱形;

②若的半徑為,,則的長為_________

查看答案和解析>>

同步練習(xí)冊答案