【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點AABy軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是________

【答案】1+

【解析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征由A點坐標(biāo)為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷OAB為等腰直角三角形,所以∠AOB=45°,再利用PQOA可得到∠OPQ=45°,然后由軸對稱的性質(zhì)得PB=PB′,BB′PQ,所以∠BPQ=B′PQ=45°,于是得到B′Py軸,則點B′的坐標(biāo)可表示為(-,t),于是利用PB=PB′t-2=|-|=,然后解方程可得到滿足條件的t的值.

∵點A坐標(biāo)為(-2,2),

k=-2×2=-4,

∴反比例函數(shù)解析式為y=-

OB=AB=2,

∴△OAB為等腰直角三角形,

∴∠AOB=45°,

PQOA,

∴∠OPQ=45°,

∵點B和點B′關(guān)于直線l對稱,

PB=PB′,BB′PQ,

∴∠B′PQ=OPQ=45°,B′PB=90°,

B′Py軸,

∴點B′的坐標(biāo)為(-,t),

PB=PB′,

t-2=|-|=,

整理得t2-2t-4=0,解得t1=1+,t2=1-(不符合題意,舍去),

t的值為1+,

故答案為:1+.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C>B,AE平分∠BAC,F(xiàn)為射線AE上一點(不與點E重合),且FDBCD;

(1)如果點F與點A重合,且∠C=50°,B=30°,如圖1,求∠EFD的度數(shù);

(2)如果點F在線段AE上(不與點A重合),如圖2,問∠EFD與∠C﹣B有怎樣的數(shù)量關(guān)系?并說明理由.

(3)如果點FABC外部,如圖3,此時∠EFD與∠C﹣B的數(shù)量關(guān)系是否會發(fā)生變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要得到ABCD,只需要添加一個條件,這個條件不可以( )

A. 1=3 B. BBCD=180°

C. 2=4 D. DBAD=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.

(1)求⊙O 的半徑r 的長度;

(2)求sin∠CMD;

(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BNCE于點 F,求HEHF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=8,AC=6.點D在邊AB上,AD=4.5ABC的角平分線AECD于點F

1)求證:ACD∽△ABC;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 O 是直線 AB上一點,∠COD 是直角,OE平分∠BOC

(1)如圖1,若∠DOE=25°,求∠AOC 的度數(shù);

如圖2,若∠DOEα,直接寫出∠AOC的度數(shù)(用含α的式子表示);

(2)將圖 1中的∠COD 繞點O按順時針方向旋轉(zhuǎn)至圖 2 所示位置.探究∠DOE 與∠AOC 的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊, 分別是邊上的點,且 , ,點與點關(guān)于對稱,連接,.

(1)連接,則之間的數(shù)量關(guān)系是 ;

(2)若,求的大。ㄓ的式子表示)

(2)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A=30°,∠B=70°,CE平分∠ACBCDABD,DFCEF

(1)試說明CDCBE的角平分線;

(2)和∠B相等的角是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長江中下游地區(qū)特大旱情發(fā)生后,全國人民抗旱救災(zāi),眾志成城.市政府籌集了抗旱必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

1)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

2)為了節(jié)省運費,溫州市政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時的運費又是多少元?

查看答案和解析>>

同步練習(xí)冊答案