【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是________.
【答案】1+
【解析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征由A點坐標(biāo)為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后由軸對稱的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B′的坐標(biāo)可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.
∵點A坐標(biāo)為(-2,2),
∴k=-2×2=-4,
∴反比例函數(shù)解析式為y=-,
∵OB=AB=2,
∴△OAB為等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵點B和點B′關(guān)于直線l對稱,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y軸,
∴點B′的坐標(biāo)為(-,t),
∵PB=PB′,
∴t-2=|-|=,
整理得t2-2t-4=0,解得t1=1+,t2=1-(不符合題意,舍去),
∴t的值為1+,
故答案為:1+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C>∠B,AE平分∠BAC,F(xiàn)為射線AE上一點(不與點E重合),且FD⊥BC于D;
(1)如果點F與點A重合,且∠C=50°,∠B=30°,如圖1,求∠EFD的度數(shù);
(2)如果點F在線段AE上(不與點A重合),如圖2,問∠EFD與∠C﹣∠B有怎樣的數(shù)量關(guān)系?并說明理由.
(3)如果點F在△ABC外部,如圖3,此時∠EFD與∠C﹣∠B的數(shù)量關(guān)系是否會發(fā)生變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要得到AB∥CD,只需要添加一個條件,這個條件不可以是( )
A. ∠1=∠3 B. ∠B+∠BCD=180°
C. ∠2=∠4 D. ∠D+∠BAD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.
(1)求⊙O 的半徑r 的長度;
(2)求sin∠CMD;
(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BN交CE于點 F,求HEHF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=8,AC=6.點D在邊AB上,AD=4.5.△ABC的角平分線AE交CD于點F.
(1)求證:△ACD∽△ABC;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點 O 是直線 AB上一點,∠COD 是直角,OE平分∠BOC.
(1)①如圖1,若∠DOE=25°,求∠AOC 的度數(shù);
②如圖2,若∠DOE=α,直接寫出∠AOC的度數(shù)(用含α的式子表示);
(2)將圖 1中的∠COD 繞點O按順時針方向旋轉(zhuǎn)至圖 2 所示位置.探究∠DOE 與∠AOC 的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中, 分別是邊上的點,且 , ,點與點關(guān)于對稱,連接,交于.
(1)連接,則之間的數(shù)量關(guān)系是 ;
(2)若,求的大。ㄓ的式子表示)
(2)用等式表示線段和之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,
(1)試說明CD是△CBE的角平分線;
(2)和∠B相等的角是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長江中下游地區(qū)特大旱情發(fā)生后,全國人民抗旱救災(zāi),眾志成城.市政府籌集了抗旱必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 400 | 500 | 600 |
(1)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)省運費,溫州市政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時的運費又是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com