(本小題滿分10分)
學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 的值為( )A. B. 1 C. D. 2
(2)對于,∠A的正對值sad A的取值范圍是 .
(3)已知,其中為銳角,試求sad的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年河北省中考模擬試卷數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
如圖,在平面直角坐標(biāo)系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個動點(diǎn),以P為圓心,3為半徑作⊙P。
(1)連結(jié)PA,若PA=PB,試判斷⊙P與X軸的位置關(guān)系,并說明理由;
(2)當(dāng)K為何值時,以⊙P與直線L的兩個交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年四川省鹽源縣民族中學(xué)中考模擬試題數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.動點(diǎn)P從D點(diǎn)出發(fā)沿DC以每秒1個單位的速度向終點(diǎn)C運(yùn)動,動點(diǎn)Q從C點(diǎn)出發(fā)沿CB以每秒2個單位的速度向B點(diǎn)運(yùn)動.兩點(diǎn)同時出發(fā),當(dāng)P點(diǎn)到達(dá)C點(diǎn)時,Q點(diǎn)隨之停止運(yùn)動.
【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當(dāng)P點(diǎn)離開D點(diǎn)幾秒后,PQ//AB;
【小題3】(3)當(dāng)P、Q、C三點(diǎn)構(gòu)成直角三角形時,求點(diǎn)P從點(diǎn)D運(yùn)動的時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、P的坐標(biāo)分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。
【小題1】(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的表達(dá)式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對應(yīng)線段的比為3:1,請在右圖網(wǎng)格中畫出放大
后的△A1B1C1;(所畫△A1B1C1與△ABC在點(diǎn)P同側(cè));
【小題3】(3)經(jīng)過A1、B1、C1三點(diǎn)的拋物線能否由(1)中的拋物線平
移得到?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆河南省商丘市九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點(diǎn)O,∠1 = ∠2 = 45°.
【小題1】(1)如圖1,若AO = OB,請寫出AO與BD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點(diǎn)O順時針旋轉(zhuǎn)得到
圖2,其中AO = OB.
求證:AC = BD,AC ⊥ BD;
【小題3】(3)將圖2中的OB拉長為AO的k倍得到
圖3,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com