【題目】等腰三角形的底邊BC=8cm,且|AC﹣BC|=2cm,則腰長AC的長為( 。
A. 10cm或6cm B. 10cm C. 6cm D. 8cm或6cm
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于點(diǎn)P(x,y),規(guī)定x+y=a,那么就把a(bǔ)叫點(diǎn)P的親和數(shù).例如:若P(2,3),則2+3=5,那么5叫P的親和數(shù).
(1)在平面直角坐標(biāo)系中,已知,點(diǎn)A(﹣2,6) ①B(1,3),C(3,2),D(2,2),與點(diǎn)A的親和數(shù)相等的點(diǎn);
②若點(diǎn)E在直線y=x+6上,且與點(diǎn)A的親和數(shù)相同,則點(diǎn)E的坐標(biāo)是;
(2)如圖點(diǎn)P是矩形GHMN邊上的任意點(diǎn),且點(diǎn)H(2,3),N(﹣2,﹣3),點(diǎn)Q是直線y=﹣x+b上的任意點(diǎn),若存在兩點(diǎn)P、Q的親和數(shù)相同,那么求b的取值范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條平行直線上各有n個(gè)點(diǎn),用這n對點(diǎn)按如下的規(guī)則連接線段;
①平行線之間的點(diǎn)在連線段時(shí),可以有共同的端點(diǎn),但不能有其它交點(diǎn);
②符合①要求的線段必須全部畫出;
圖1展示了當(dāng)n=1時(shí)的情況,此時(shí)圖中三角形的個(gè)數(shù)為0;
圖2展示了當(dāng)n=2時(shí)的一種情況,此時(shí)圖中三角形的個(gè)數(shù)為2;
(1)當(dāng)n=3時(shí),請?jiān)趫D3中畫出使三角形個(gè)數(shù)最少的圖形,此時(shí)圖中三角形的個(gè)數(shù)為__________個(gè);
(2)試猜想當(dāng)n對點(diǎn)時(shí),按上述規(guī)則畫出的圖形中,最少有多少個(gè)三角形?
(3)當(dāng)n=2006時(shí),按上述規(guī)則畫出的圖形中,最少有多少個(gè)三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)大學(xué)生創(chuàng)業(yè),政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應(yīng)運(yùn)而生.某市統(tǒng)計(jì)了該市2015年1﹣5月新注冊小型企業(yè)的數(shù)量,并將結(jié)果繪制成如圖兩種不完整的統(tǒng)計(jì)圖:
(1)某市2015年1﹣5月份新注冊小型企業(yè)一共 家,請將折線統(tǒng)計(jì)圖補(bǔ)充完整.
(2)該市2015年3月新注冊小型企業(yè)中,只有2家是養(yǎng)殖企業(yè),現(xiàn)從3月新注冊的小型企業(yè)中隨機(jī)抽取2家企業(yè)了解其經(jīng)營情況.請以列表或畫樹狀圖的方法求出所抽取的2家企業(yè)恰好都是養(yǎng)殖企業(yè)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果拋物線y=2x2不動(dòng),而把x軸、y軸分別向下、向右平移2個(gè)單位長度,那么在新坐標(biāo)系下拋物線的解析式為( 。
A.y=2(x﹣2)2+2B.y=2(x+2)2﹣2
C.y=2(x﹣2)2﹣2D.y=2(x+2)2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為直線AD上一點(diǎn),∠AOC與∠AOB互補(bǔ),OM、ON分別是∠AOC、∠AOB的平分線,∠MON=56°.
⑴ ∠COD與∠AOB相等嗎?請說明理由;
⑵ 求∠BOC的度數(shù);
⑶ 求∠AOB與∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點(diǎn)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”.
①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點(diǎn)P,使△PDC是△PAB的“旋補(bǔ)三角形”?若存在,給予證明,并求△PAB的“旋補(bǔ)中線”長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com