【題目】下列圖形按一定規(guī)律排列觀察并回答

(1)依照此規(guī)律,第四個圖形共有 第六個圖形共有 ;

(2)第n個圖形中有

(3)根據(jù)(2)中的結(jié)論,第幾個圖形中有2017★?

【答案】(1)13,19;(2)1+3n;(3)672.

【解析】試題分析:(1)(2)把五角星分成兩部分,頂點處的一個不變,其它的分三條線,每一條線上后一個圖形比前一個圖形多一個,根據(jù)此規(guī)律找出第n個圖形中五角星的個數(shù)的關(guān)系式;

(3)然后把2017代入(2)中的結(jié)論進行計算即可求解.

試題解析:(1)觀察發(fā)現(xiàn),第1個圖形五角星的個數(shù)是,1+3=4,

第2個圖形五角星的個數(shù)是,1+3×2=7,

第3個圖形五角星的個數(shù)是,1+3×3=10,

第4個圖形五角星的個數(shù)是,1+3×4=13,

第6個圖形五角星的個數(shù)是,1+3×6=19,

故答案為:13,19;

(2)第n個圖形五角星的個數(shù)是,1+3×n=3n+1,

故答案為:1+3n;

(3)3n+1=2017,

解得n=672,

答:第672個圖形中有2017個★.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①三點確定一個圓;②任何三角形有且只有一個內(nèi)切圓;③相等的圓心角所對的弧相等;④正多邊形一定是中心對稱圖形,其中真命題有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果|a+2|+b120,那么(a+b2019的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a是最小的正整數(shù),b是最大的負(fù)整數(shù),c是絕對值最小的有理數(shù),請問:a,b,c三數(shù)之和是( 。

A. 1B. 0C. 1D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a<﹣1,則方程x2+(1﹣2a)x+a2=0根的情況是(
A.有兩個不相等的實數(shù)根
B.有兩個相等的實根
C.沒有實數(shù)根
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點O為端點作射線 OC,使BOC=60°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OBCOE= °;

(2)如圖2,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,OE恰好平分AOC請說明OD所在射線是BOC的平分線;

(3)如圖3,將三角板DOE繞點O逆時針轉(zhuǎn)動到某個位置時,若恰好COD= AOEBOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B,C在A,E的異側(cè),BD⊥AE于D,CE⊥AE于E

(1)試說明:BD=DE+CE.
(2)若直線AE繞A點旋轉(zhuǎn)到圖(2)位置時(BD<CE),其余條件不變,問BD與DE,CE的關(guān)系如何?請直接寫出結(jié)果;

(3)若直線AE繞A點旋轉(zhuǎn)到圖(3)位置時(BD>CE),其余條件不變,問BD與DE,CE的關(guān)系如何?請直接寫出結(jié)果,不需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式結(jié)果為負(fù)數(shù)的是(
A.﹣(﹣1)
B.(﹣1)4
C.﹣|﹣1|
D.|1﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C為數(shù)軸上的三點,動點A、B同時從原點出發(fā),動點A每秒運動x個單位,動點B每秒運動y個單位,且動點A運動到的位置對應(yīng)的數(shù)記為a,動點B運動到的位置對應(yīng)的數(shù)記為b,定點C對應(yīng)的數(shù)為8.

(1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x=   ,y=   ,并請在數(shù)軸上標(biāo)出A、B兩點的位置.

(2)若動點A、B在(1)運動后的位置上保持原來的速度,且同時向正方向運動z秒后使得|a|=|b|,使得z=   

(3)若動點A、B在(1)運動后的位置上都以每秒2個單位向正方向運動繼續(xù)運動t秒,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,點A與點B之間的距離為AB,且AC+BC=1.5AB,則t=   

查看答案和解析>>

同步練習(xí)冊答案