在Rt△ABC中,∠C=90°,BC:AB=2:3,求∠A的四個(gè)三角函數(shù)值.
【答案】分析:根據(jù)題意畫出圖形,先由勾股定理求出AC的長(zhǎng),再由銳角三角函數(shù)的定義解答即可.
解答:解:如圖所示,BC:AB=2:3,
設(shè)BC=2x,則AB=3x,由勾股定理得,AC===x,
由銳角三角函數(shù)的定義可知,
sinA===;cosA===;
tanA===;ctgA===
點(diǎn)評(píng):本題考查的是求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,通過設(shè)參數(shù)的方法求三角函數(shù)值,或者利用同角(或余角)的三角函數(shù)關(guān)系式求三角函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案