【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.
(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①;② .
(2)如果∠COP=20°,則①∠BOP=°;②∠POF=°.
(3)∠EOC與∠BOF相等嗎? , 理由是 .
(4)如果∠COP=20°,求∠DOE的度數(shù).
【答案】
(1)∠BOP=∠COP,∠AOD=∠BOC
(2)∠BOP=∠COP=20°,∠POF=90°﹣20°=70°
(3)相等,同角的余角相等
(4)解:∵OP是∠BOC的平分線,
∴∠BOC=2×20°=40°,
∴∠AOD=∠BOC=40°,
∴∠DOE=∠AOD+∠AOE,
=40°+90°,
=130°
【解析】解:(1)①∠BOP=∠COP,②∠AOD=∠BOC;
( 2 )①∠BOP=∠COP=20°,②∠POF=90°﹣20°=70°;
( 3 )相等,同角的余角相等;
故答案為:(1)∠BOP=∠COP,∠AOD=∠BOC,(2)20,70,(3)相等,等角的余角相等;
(1)根據(jù)角平分線的定義得出①∠BOP=∠COP ;根據(jù)對頂角相等得出②∠AOD=∠BOC;
(2)根據(jù)角平分線的定義得出①∠BOP=∠COP= 20° ;根據(jù)垂直的定義及角的和差得出∠POF=90°﹣20°=70° ;
(3)相等,根據(jù)同角的余角相等得出結(jié)論 ;
(4)根據(jù)角平分線的定義得出∠BOC的度數(shù),根據(jù)對頂角相等得出∠AOD=∠BOC=40°,根據(jù)垂直的定義及角的和差得出∠DOE=∠AOD+∠AOE,從而得出答案。
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點A,頂點為B.
(1)用含a的式子表示點B的坐標;
(2)經(jīng)過點C(0,﹣2)的直線AC與OB(O為原點)相交于點D,與拋物線的對稱軸相交于點E,△OCD≌△BED,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校對學生的暑假參加志愿服務(wù)時間進行抽樣調(diào)查,將收集的數(shù)據(jù)分成A,B,C,D,E五組進行整理,并繪制成如下的統(tǒng)計圖表(圖中信息不完整).
請結(jié)合以上信息解答下列問題
(1)求a、m、n的值.
(2)補全“人數(shù)分組統(tǒng)計圖①中C組的人數(shù)和圖②A組和B組的比例值”.
(3)若全校學生人數(shù)為800人,請估計全校參加志愿服務(wù)時間在30≤x<40的范圍的學生人數(shù).
分組統(tǒng)計表
組別 | 志愿服務(wù)時間 | 人數(shù) |
A | 0≤x<10 | a |
B | 10≤x<20 | 40 |
C | 20≤x<30 | m |
D | 30≤x<40 | n |
E | x≥40 | 16 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中的錯誤的是( ).
A、一組鄰邊相等的矩形是正方形
B、一組鄰邊相等的平行四邊形是菱形
C、一組對邊相等且有一個角是直角的四邊形是矩形
D、一組對邊平行且相等的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由兩個長為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )
A.15
B.16
C.19
D.20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com