【題目】如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為,則圖中所有正方形的面積的和是___________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),△ABC各頂點(diǎn)的坐標(biāo)分別是A(﹣2,4),B(﹣4,3),C(﹣1,1).將△ABC向右平移5個(gè)單位長度,再向下平移4個(gè)單位長度得到△A′B′C′.
(1)請(qǐng)作出平移后的△A′B′C′,并寫出△A′B′C′各頂點(diǎn)的坐標(biāo);
(2)如果將△A′B′C′看成是由△ABC經(jīng)過一次平移得到的,請(qǐng)指出這一平移的平移方向和平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳“掃黑除惡”專項(xiàng)行動(dòng),社區(qū)準(zhǔn)備制作一幅宣傳版面,噴繪時(shí)為了美觀,要在矩形圖案四周外圍增加一圈等寬的白邊,已知圖案的長為2米,寬為1米,圖案面積占整幅宣傳版面面積的90%,若設(shè)白邊的寬為x米,則根據(jù)題意可列出方程( )
A. 90%×(2+x)(1+x)=2×1 B. 90%×(2+2x)(1+2x)=2×1
C. 90%×(2﹣2x)(1﹣2x)=2×1 D. (2+2x)(1+2x)=2×1×90%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,斜邊的中垂線交于點(diǎn),交的外角平分線于點(diǎn),于點(diǎn),垂直的延長線與點(diǎn),連接交于點(diǎn),現(xiàn)有不列結(jié)論:①,②,③,④,⑤,其中正確的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是以AB為直徑的⊙O上一動(dòng)點(diǎn),過點(diǎn)C作⊙O直徑CD,過點(diǎn)B作BE⊥CD于點(diǎn)E.已知AB=6cm,設(shè)弦AC的長為xcm,B,E兩點(diǎn)間的距離為ycm(當(dāng)點(diǎn)C與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0).
小冬根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小冬的探究過程,請(qǐng)補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
經(jīng)測(cè)量m的值是(保留一位小數(shù)).
(2)建立平面直角坐標(biāo)系,描出表格中所有各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)在(2)的條件下,當(dāng)函數(shù)圖象與直線相交時(shí)(原點(diǎn)除外),∠BAC的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙C經(jīng)過原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),D為⊙C在第一象限內(nèi)的一點(diǎn)且∠ODB=60°.
求:(1)求線段AB的長及⊙C的半徑;
(2)求B點(diǎn)坐標(biāo)及圓心C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個(gè)條件才能使△ABC≌△DEC,不能添加的一組條件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:將一個(gè)邊長為n(n≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn), 則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少呢?
問題探究:要研究上面的問題,我們不妨先從特例入手,進(jìn)而找到一般規(guī)律
探究一:將一個(gè)邊長為2的正三角形的三條邊平分,連接各邊中點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
如圖1,連接邊長為2的正三角形三條邊的中點(diǎn),從上往下:共有1+2+3=6個(gè)結(jié)點(diǎn).邊長為1的正三角形,第一層有1個(gè),第二層有2個(gè),共有1+2=3個(gè),線段數(shù)為3×3=9條;邊長為2的正三角形有1個(gè),線段數(shù)為3條,總共有3×(1+2+1)=2×(1+2+3)=12條線段.
探究二:將一個(gè)邊長為3的正三角形的三條邊三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
如圖2,連接邊長為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下:共有1+2+3+4=10個(gè)結(jié)點(diǎn).邊長為1的正三角形,第一層有1個(gè),第二層有2個(gè),第三層有3個(gè),共有1+2+3=6個(gè),線段數(shù)為3×6=18條;邊長為2的正三角形有1+2=3個(gè),線段數(shù)為3×3=9條,邊長為3的正三角形有1個(gè),線段數(shù)為3條,總共有3×(1+2+3+1+2+1)=3×(1+2+3+4)=30條線段.
探究三:
請(qǐng)你仿照上面的方法,探究將邊長為4的正三角形的三條邊四等分(圖3),連接各邊對(duì)應(yīng)的等分點(diǎn),該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
(畫出示意圖,并寫出探究過程)
問題解決:
請(qǐng)你仿照上面的方法,探究將一個(gè)邊長為n(n≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?(寫出探究過程)
實(shí)際應(yīng)用:
將一個(gè)邊長為30的正三角形的三條邊三十等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)B分別在x軸和y軸的正半軸上,OA=3,OB=2OA,C為直線y=2x與直線AB的交點(diǎn),點(diǎn)D在線段OC上,OD=.
(1)求點(diǎn)C的坐標(biāo);
(2)若P為線段AD上一動(dòng)點(diǎn)(不與A、D重合).P的橫坐標(biāo)為x,△POD的面積為S,請(qǐng)求出S與x的函數(shù)關(guān)系式;
(3)若F為直線AB上一動(dòng)點(diǎn),E為x軸上一點(diǎn),是否存在以O、D、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com