【題目】已知拋物線,請(qǐng)你確定一個(gè)b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間,你確定的b的值是_______。
【答案】答案不唯一:-2<b<2
【解析】分析:把(0,-3)代入拋物線的解析式求出c的值,在(1,0)和(3,0)之間取一個(gè)點(diǎn),分別把x=1和x=3它的坐標(biāo)代入解析式即可得出不等式組,求出答案即可.
解析:把(0,-3)代入拋物線的解析式得:c=-3,∴y=x2+bx-3,∵使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間,∴把x=1代入y=x2+bx-3得:y=1+b-3<0把x=3代入y=x2+bx-3得:y=9+3b-3>0,∴-2<b<2,即在-2<b<2范圍內(nèi)的任何一個(gè)數(shù)都符合.
故答案為:答案不唯一:-2<b<2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( 。
A. x3+x3=2x6B. x3÷x=x3
C. (x+y)2=x2+y2D. (﹣x3)2=x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 . (把所有正確結(jié)論的序號(hào)都填在橫線上) ①∠DCF= ∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)矩形的面積為(6ab2+4a2b)cm2 , 一邊長(zhǎng)為2abcm,則它的周長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D、E、F分別是AC、BC、BA延長(zhǎng)線上的點(diǎn),四邊形ADEF為平行四邊形.求證:AD=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠OAB=45°,點(diǎn)A的坐標(biāo)是(4,0),AB= ,連結(jié)OB.
(1)直接寫出點(diǎn)B的坐標(biāo).
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線O﹣B﹣A方向向終點(diǎn)A勻速運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿OA方向勻速運(yùn)動(dòng),若點(diǎn)P的運(yùn)動(dòng)速度為 個(gè)單位/秒,點(diǎn)Q的運(yùn)動(dòng)速度是1個(gè)單位/秒,P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)求出使△OPQ的面積等于1.5時(shí)t的值.
(3)動(dòng)點(diǎn)P仍按(2)中的方向和速度運(yùn)動(dòng),但Q點(diǎn)從A點(diǎn)向O點(diǎn)運(yùn)動(dòng),速度為1個(gè)單位/秒,P、Q與△OAB中的任意一個(gè)頂點(diǎn)形成直角三角形時(shí),求此時(shí)t(t≠0)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】受“減少稅收,適當(dāng)補(bǔ)貼”政策的影響,某市居民購房熱情大幅提高.據(jù)調(diào)查,2016年1月該市宏鑫房地產(chǎn)公司的住房銷售量為100套,3月份的住房銷售量為169套.假設(shè)該公司這兩個(gè)月住房銷售量的增長(zhǎng)率為x,根據(jù)題意所列方程為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com