【題目】如圖,拋物線(xiàn)經(jīng)過(guò)A(1,0),B(4,0),C(0,-4)三點(diǎn),點(diǎn)D是直線(xiàn)BC上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連結(jié)DC,DB,則△BCD的面積的最大值是( )

A.7
B.7.5
C.8
D.9

【答案】C
【解析】解:設(shè)拋物線(xiàn)的解析式是y=a+bx+c,
∵拋物線(xiàn)經(jīng)過(guò)A(1,0),B(4,0),C(0,-4)三點(diǎn),


∴ y=-+5x-4,
設(shè)過(guò)點(diǎn)B(4,0),C(0,-4)的直線(xiàn)解析式為y=kx+b,

∴ 直線(xiàn)BC的解析式為y=x-4,
設(shè)點(diǎn)D的坐標(biāo)為(x,-+5x-4),
∴ SBCD==-2+8
∴ 當(dāng)x=2時(shí), △BCD的面積取得最大值,最大值是8.
∴ 正確答案是C。
要求△BCD的面積的最大值,只要表示出△BCD的面積即可,根據(jù)題目中的信息可以求出拋物線(xiàn)的解析式和直線(xiàn)的解析式,從而表示出△BCD的面積,之后根據(jù)二次函數(shù)的性質(zhì)求得最大值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,P是CD邊上一點(diǎn),DF⊥AP,BE⊥AP.

求證:AE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】木桿AB斜靠在墻壁上,當(dāng)木桿的上端A沿墻壁NO豎直下滑時(shí),木桿的底端B也隨之沿著射線(xiàn)OM方向滑動(dòng).下列圖中用虛線(xiàn)畫(huà)出木桿中點(diǎn)P隨之下落的路線(xiàn),其中正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(+2)(2)1a(a0)、(+1)(1)b1(b0)……兩個(gè)含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱(chēng)這兩個(gè)代數(shù)式互為有理化因式.例如,, +112+323等都是互為有理化因式.進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號(hào).請(qǐng)完成下列問(wèn)題:

(1)化簡(jiǎn):;

(2)計(jì)算:;

(3)比較的大小,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y= x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線(xiàn)AC下方拋物線(xiàn)上的動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)P且與y軸平行的直線(xiàn)l與直線(xiàn)AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線(xiàn)的頂點(diǎn)時(shí),在直線(xiàn)AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年體育中考在即,學(xué)校體育組對(duì)九(1)班50名學(xué)生進(jìn)行了長(zhǎng)跑項(xiàng)目的測(cè)試,根據(jù)測(cè)試成績(jī)制作了如圖兩個(gè)統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次測(cè)試的學(xué)生中,得4分的學(xué)生有多少人?
(2)本次測(cè)試的平均分是多少?
(3)該校九年級(jí)共有600名學(xué)生參加了長(zhǎng)跑項(xiàng)目的測(cè)試,估計(jì)測(cè)試成績(jī)?cè)?分以上(含4分)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波某公司經(jīng)銷(xiāo)一種綠茶,每千克成本為 元.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷(xiāo)售量 (千克)隨銷(xiāo)售單價(jià) (元/千克)的變化而變化,具體關(guān)系式為: .設(shè)這種綠茶在這段時(shí)間內(nèi)的銷(xiāo)售利潤(rùn)為 (元),解答下列問(wèn)題:
(1)求 的關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià) 取何值時(shí),銷(xiāo)售利潤(rùn) 的值最大,最大值為多少?
(3)如果物價(jià)部門(mén)規(guī)定這種綠茶的銷(xiāo)售單價(jià)不得高于 元/千克,公司想要在這段時(shí)間內(nèi)獲得 元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(3,0),y軸交于點(diǎn)B,△AOB的面積為6,yx的增大而減小,試求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖像與反比例函數(shù)y= 的圖像交于點(diǎn)A﹙﹣2,﹣5﹚C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.
(1)求反比例函數(shù)y= 和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC.求△AOC的面積.、

查看答案和解析>>

同步練習(xí)冊(cè)答案