【題目】小明一家三口國慶節(jié)隨旅游團去九寨溝旅游,共花費人民幣5600元,他把旅途費用支出情況制成了如下的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解決下列問題:

(1)哪一部分支出的費用占整個支出的 ?
(2)小明一家在食宿上用去多少元?
(3)小明一家支出的路費共多少元?

【答案】
(1)解:∵根據(jù)購物費用在扇形統(tǒng)計圖中的圓心角是90°, = ,

∴購物支出的費用占整個支出的


(2)解:∵共花費人民幣5600元,食宿占總費用的30%,

∴小明一家在食宿上用=5600×30%=1680(元)


(3)解:5600×(1﹣30%﹣25%)

=5600×45%

=2520(元).

答:小明一家支出的路費共2520元


【解析】(1)根據(jù)購物費用在扇形統(tǒng)計圖中的圓心角是90°,得到購物支出的費用占整個支出的;(2)由共花費人民幣5600元,食宿占總費用的30%,得到小明一家在食宿上的費用;(3)根據(jù)扇形圖得到路費的百分比,求出小明一家支出的路費.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線(m>0)交y軸于點C,CA⊥y軸,交拋物線于點A,點B在拋物線上,且在第一象限內,BE⊥y軸,交y軸于點E,交AO的延長線于點D,BE=2AC.

(1)用含m的代數(shù)式表示BE的長.

(2)當m=時,判斷點D是否落在拋物線上,并說明理由.

(3)若AG∥y軸,交OB于點F,交BD于點G.

①若△DOE與△BGF的面積相等,求m的值.

②連結AE,交OB于點M,若△AMF與△BGF的面積相等,則m的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了掌握我校初中二年級女同學身高情況,從中抽測了60名女同學的身高,這個問題中的總體是____________________,樣本是____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:C是線段AB所在平面內任意一點,分別以AC、BC為邊,在AB同側作等邊三角形ACE和BCD,聯(lián)結AD、BE交于點P.

(1)如圖1,當點C在線段AB上移動時,線段AD與BE的數(shù)量關系是:
(2)如圖2,當點C在直線AB外,且∠ACB<120°,上面的結論是否還成立?若成立請證明,不成立說明理由.
(3)在(2)的條件下,∠APE大小是否隨著∠ACB的大小發(fā)生變化而發(fā)生變化,若變化寫出變化規(guī)律,若不變,請求出∠APE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )

A.x3+x2x5B.x3x2x6

C.(﹣x32÷x51D.(﹣x3÷(﹣x2=﹣x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
(1)小明的思路是:如圖2,過P作PE∥AB,通過平行線性質,可得∠APC=
問題遷移:如圖3,AD∥BC,點P在射線OM上運動,∠ADP=∠α,∠BCP=∠β.

(2)當點P在A、B兩點之間運動時,∠CPD、∠α、∠β之間有何數(shù)量關系?請說明理由.
(3)如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個等腰三角形的兩邊長分別是3和7,則它的周長為(
A.17
B.15
C.13
D.13或17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x2+mx+25是完全平方式,則m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,C點表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.

(1)a= , c=;
(2)如圖所示,在(1)的條件下,若點A與點B之間的距離表示為AB=|a﹣b|,點B與點C之間的距離表示為BC=|b﹣c|,點B在點A、C之間,且滿足BC=2AB,則b=
(3)在(1)(2)的條件下,若點P為數(shù)軸上一動點,其對應的數(shù)為x,當代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時,此時x= , 最小值為;
(4)在(1)(2)的條件下,若在點B處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點C處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為t(秒),請表示出甲、乙兩小球之間的距離d(用t的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案