如圖,把△ABC沿EF翻折,疊合后的圖形如圖.若∠A=60°,∠1=95°,則∠2的度數(shù)為______.
如圖,∵△ABC沿EF翻折,
∴∠BEF=∠B′EF,∠CFE=∠C′FE,
∴180°-∠AEF=∠1+∠AEF,180°-∠AFE=∠2+∠AFE,
∵∠1=95°,
∴∠AEF=
1
2
(180°-95°)=42.5°,
∵∠A+∠AEF+∠AFE=180°,
∴∠AFE=180°-60°-42.5°=77.5°,
∴180°-77.5=∠2+77.5°,
∴∠2=25°.
故答案為25°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在直角梯形ABCD中,ADBC,∠B=90°,將直角梯形ABCD沿CE折疊,使點(diǎn)D落在AB上的F點(diǎn),若AB=BC=12,EF=10,∠FCD=90°,則AF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=6,AD=2
3
,點(diǎn)P是邊BC上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),過(guò)點(diǎn)P作直線PQBD,交CD邊于Q點(diǎn),再把△PQC沿著動(dòng)直線PQ對(duì)折,點(diǎn)C的對(duì)應(yīng)點(diǎn)是R點(diǎn).設(shè)CP=x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CPQ的度數(shù).
(2)當(dāng)x取何值時(shí),點(diǎn)R落在矩形ABCD的邊AB上?
(3)當(dāng)點(diǎn)R在矩形ABCD外部時(shí),求y與x的函數(shù)關(guān)系式.并求此時(shí)函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:三角形紙片ABC中,∠C=90°,AB=12,BC=6,B′是邊AC上一點(diǎn).將三角形紙片折疊,使點(diǎn)B與點(diǎn)B′重合,折痕與BC、AB分別相交于E、F.
(1)設(shè)BE=x,B′C=y,試建立y關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(2)當(dāng)△AFB′是直角三角形時(shí),求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCED內(nèi)部時(shí),∠B+∠C可由∠1,∠2表示為(  )
A.∠B+∠C=180°-∠1-∠2B.∠B+∠C=180°-
∠1+∠2
2
C.∠B+∠C=90°+∠1+∠2D.無(wú)法表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們知道三角形的一條中線能將這個(gè)三角形分成面積相等的兩個(gè)三角形,反之,若經(jīng)過(guò)三角形的一個(gè)頂點(diǎn)引一條直線將這個(gè)三角形分成面積相等兩個(gè)三角形,那么這條直線平分三角形的這個(gè)頂點(diǎn)的對(duì)邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
請(qǐng)你直接應(yīng)用上述結(jié)論解決以下問(wèn)題:

(1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點(diǎn)C落在點(diǎn)E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
1
4
,問(wèn)線段AE與線段BD有什么關(guān)系?在圖中按要求畫出圖形,并說(shuō)明理由.
(2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)P是BC邊上的任意一點(diǎn),連接PD,沿PD翻折△ADP,使點(diǎn)A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
1
4
,直接寫出BP2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在矩形ABCD中,BD是對(duì)角線,∠ABD=30°,將△ABD沿直線BD折疊,點(diǎn)A落在點(diǎn)E處,則∠CDE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,若正方形ABCD的邊長(zhǎng)是4,BE=1,在AC上找一點(diǎn)P使PE+PB的值最小,則最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)請(qǐng)把圖補(bǔ)成以y軸為對(duì)稱軸的軸對(duì)稱圖形(蝴蝶),并標(biāo)上相應(yīng)的字母;(記點(diǎn)A,B,C,D的對(duì)應(yīng)點(diǎn)分別是A′,B′,C′,D′)
(2)若點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(-3,3),點(diǎn)C的坐標(biāo)為(1.6,-1.6),點(diǎn)D的坐標(biāo)為(-1.2,2.7),寫出對(duì)應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案