【題目】科學考察隊的一輛越野車需要穿越650千米的沙漠,但這輛車每次裝滿汽油最多只能行駛600千米,隊長想出一個方法,在沙漠中設(shè)一個儲油點,越野車裝滿油從起點出發(fā),到儲油點時從車中取出部分油放進儲油點,然后返回出發(fā)點,加滿油后再開往,到儲油點時取出儲存的所有油放在車上,再到達終點.用隊長想出的方法,這輛越野車穿越這片沙漠的最大行程是____________千米.
【答案】800
【解析】
根據(jù)題意可知:儲油點距離起點越遠且儲油越多,這輛越野車穿越這片沙漠的行程就越大,但這輛車需A到P,取出部分油,再回到A,故當P距離A較遠時,越野車在P點最多可以放行程的油,可以求出此時AP的長,從A加滿后到P點消耗行程的油,再加上儲存的油即可求出這輛越野車穿越這片沙漠的最大行程.
解:由題意可知,儲油點距離起點越遠且儲油越多,這輛越野車穿越這片沙漠的行程就越大,但這輛車需A到P,取出部分油,再回到A,故當P距離A較遠時,越野車在P點最多可以放行程的油,此時從A到P和從P返回A各需消耗行程的油,即AP=×600=200千米,
當油加滿后,再次到P點消耗行程的油,行駛了200千米,加上儲存的油可以再行駛600千米,
∴這輛越野車穿越這片沙漠的最大行程是200+600=800千米
故答案為:800.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
由于發(fā)展時間早、發(fā)展速度快,經(jīng)過20多年大規(guī)模的高速開發(fā)建設(shè),北京四環(huán)內(nèi),甚至五環(huán)內(nèi)可供開發(fā)建設(shè)的土地資源越來越稀缺,更多的土地供應將集中在五環(huán)外,甚至六環(huán)外的遠郊區(qū)縣.
據(jù)中國經(jīng)濟網(wǎng)2017年2月報道,來自某市場研究院的最新統(tǒng)計,2016年,剔除了保障房后,在北京新建商品住宅交易量整體上漲之時,北京各區(qū)域的新建商品住宅交易量則是有漲有跌其中,昌平、通州、海淀、朝陽、西城、東城六區(qū)下跌,跌幅最大的為朝陽區(qū),新建商品住宅成交量比2015年下降了而延慶、密云、懷柔、平谷、門頭溝、房山、順義、大興、石景山、豐臺十區(qū)的新建商品住宅成交量表現(xiàn)為上漲,漲幅最大的為順義區(qū),比2015年上漲了另外,從環(huán)線成交量的占比數(shù)據(jù)上,同樣可以看出成交日趨郊區(qū)化的趨勢根據(jù)統(tǒng)計,2008年到2016年,北京全市成交的新建商品住宅中,二環(huán)以內(nèi)的占比逐步從下降到了;二、三環(huán)之間的占比從下降到了;三、四環(huán)之間的占比從下降到了;四、五環(huán)之間的占比從下降到了也就是說,整體成交中位于五環(huán)之內(nèi)的新房占比,從2008年的下降到了2016年的,下滑趨勢非常明顯由此可見,新房市場的遠郊化是北京房地產(chǎn)市場發(fā)展的大勢所趨注:占比,指在總數(shù)中所占的比重,常用百分比表示
根據(jù)以上材料解答下列問題:
補全折線統(tǒng)計圖;
根據(jù)材料提供的信息,預估2017年位于北京市五環(huán)之內(nèi)新建商品住宅成交量占比約______ ,你的預估理由是______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=a,寫出求四邊形ACDE面積的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過直線上點作 的垂線,三角尺的一條直角邊從與重合的位置開始,繞點按逆時針方向旋轉(zhuǎn)至與重合時停止,在旋轉(zhuǎn)過程中,設(shè)的度數(shù)為,作的平分線.
(1)當在的內(nèi)部時,的余角是___________;(填寫所有符合條件的角)
(2)在旋轉(zhuǎn)過程中,若,求的值;
(3)在旋轉(zhuǎn)過程中,作的平分線的度數(shù)是否會隨著的變化而變化?若不變,直接寫出的度數(shù);若變化,試用含有的式子表示的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中, AB=3, BC=4,點E是BC邊上一點,連接AE,把∠B沿AB折疊,使點B落在點B'處,當△CEB'為直角三角形時, BE的長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過點A作∠DAF=∠DAB,過點D作AF的垂線,垂足為F,交AB的延長線于點P,連接CO并延長交⊙O于點G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,OB=3,求的長度;
(3)若DE=4,AE=8,求線段EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2020年元月的日歷表中,某一天對應的號數(shù)的上、下、左、右四個數(shù)的和為.
(1)如果某一天是號,請用含 的代數(shù)式把表示出來;
(2)的值可能是96嗎?如果可能,求出這一天上、下、左、右四天,如果不可能,請說明理由;
(3)的值可能是28嗎?如果可能,求出這一天上、下、左、右四天,如果不可能,請說明理由.
星期日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 |
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABD中,邊AB=OB=1,∠ABO=90°
問題探究:
(1)以AB為邊,在Rt△ABO的右邊作正方形ABC,如圖(1),則點O與點D的距離為 .
(2)以AB為邊,在Rt△ABO的右邊作等邊三角形ABC,如圖(2),求點O與點C的距離.
問題解決:
(3)若線段DE=1,線段DE的兩個端點D,E分別在射線OA、OB上滑動,以DE為邊向外作等邊三角形DEF,如圖(3),則點O與點F的距離有沒有最大值,如果有,求出最大值,如果沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市第一次用12000元購進甲、乙兩種商品.其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表:
甲 | 乙 | |
進價(元件) | 44 | 60 |
售價(元件) | 58 | 80 |
(1)該超市第一次購進甲、乙兩種商品各多少件?
(2)該超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(3)該超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多360元,求第二次乙商品是按原價打幾折銷售?(提示:設(shè)原價打折銷售,則實際售價=原價)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com