【題目】ab是任意兩個不等實數(shù),我們規(guī)定:滿足不等式axb的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足當myn,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.

1)反比例函數(shù)y=是閉區(qū)間[12019]上的“閉函數(shù)”嗎?請判斷并說明理由.

2)若一次函數(shù)y=kx+b(k0)是閉間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式.

【答案】1)是,理由見解析;(2)當k0時,函數(shù)的解析式為y=x;當k0時,函數(shù)的解析式為y=x+m+n

【解析】

1)根據(jù)“閉函數(shù)”的定義驗證反比例函數(shù)y=的函數(shù)值y是否滿足1y2019即可;

2)分兩種情況:當時和當時,分別用待定系數(shù)法求一次函數(shù)的解析式即可.

1)反比例函數(shù)y=是閉區(qū)間[12019]上的“閉函數(shù)”,

理由:∵當x=1時,y=2019,當x=2019時,y=1,

∴反比例函數(shù)y=是閉區(qū)間[1,2019]上的“閉函數(shù)”;

2)∵一次函數(shù)y=kx+b(k0)是閉區(qū)間[mn]上的“閉函數(shù)”,

∴當k0時,根據(jù)題意有

解得 ,

即此函數(shù)的解析式為y=x;

k0時,根據(jù)題意有

解得 ,

即此函數(shù)的解析式為y=x+m+n

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC紙片中,∠C=90°,AC=BC=4,點D在邊BC上,以AD為折痕,將△ABD折疊,得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+2x+cx軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.

(1)求直線和拋物線的表達式;

(2)動點P從點O出發(fā),在x軸的負半軸上以每秒1個單位長度的速度向左勻速運動,設運動時間為t秒,當t為何值時,PDC為直角三角形?請直接寫出所有滿足條件的t的值;

(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最。咳舸嬖,求出其最小值及點M,N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明到青城山游玩,乘坐纜車,當?shù)巧嚼|車的吊箱經(jīng)過點A到達點B時,它經(jīng)過了200 m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續(xù)由點B到達點D時,它又走過了200 m,纜車由點B到點D的行駛路線與水平夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,矩形ABCD中,AE平分BCE,,則下面的結論:①是等邊三角形;②;③;④,其中正確結論有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y1=與一次函數(shù)y2=k2x+b的圖象交于點A(1,8),B(-4,m)兩點.

(1)求k1,k2,b的值;

(2)求△AOB的面積;

(3)請直接寫出不等式x+b的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,EAC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙OAC于點D,交BE于點F

1)求證:BC⊙O的切線;

2)若AB=8,BC=6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:

(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出yx的函數(shù)關系式,并求出自變量x的取值范圍;

(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案