(2013•自貢)如圖,邊長為1的小正方形網(wǎng)格中,⊙O的圓心在格點上,則∠AED的余弦值是
2
5
5
2
5
5
分析:根據(jù)同弧所對的圓周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用銳角三角函數(shù)定義求出cos∠ABC的值,即為cos∠AED的值.
解答:解:∵∠AED與∠ABC都對
AD

∴∠AED=∠ABC,
在Rt△ABC中,AB=2,AC=1,
根據(jù)勾股定理得:BC=
5
,
則cos∠AED=cos∠ABC=
2
5
=
2
5
5

故答案為:
2
5
5
點評:此題考查了圓周角定理,銳角三角函數(shù)定義,以及勾股定理,熟練掌握圓周角定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•自貢)如圖,在平面直角坐標系中,⊙A經(jīng)過原點O,并且分別與x軸、y軸交于B、C兩點,已知B(8,0),C(0,6),則⊙A的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•自貢)如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長線于F,BG⊥AE于G,BG=4
2
,則△EFC的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•自貢)如圖,點O是正六邊形的對稱中心,如果用一副三角板的角,借助點O(使該角的頂點落在點O處),把這個正六邊形的面積n等分,那么n的所有可能取值的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•自貢)如圖,在函數(shù)y=
8
x
(x>0)
的圖象上有點P1、P2、P3…、Pn、Pn+1,點P1的橫坐標為2,且后面每個點的橫坐標與它前面相鄰點的橫坐標的差都是2,過點P1、P2、P3…、Pn、Pn+1分別作x軸、y軸的垂線段,構(gòu)成若干個矩形,如圖所示,將圖中陰影部分的面積從左至右依次記為S1、S2、S3…、Sn,則S1=
4
4
,Sn=
8
n(n+1)
8
n(n+1)
.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•自貢)如圖,已知拋物線y=ax2+bx-2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),tan∠DBA=
12

(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案