作業(yè)寶如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)y2=數(shù)學(xué)公式(k為常數(shù),
k≠0)的圖象相交于點(diǎn)A(1,3).
(1)求m及k的值;
(2)求出點(diǎn)B的坐標(biāo);
(3)觀察圖象,直接寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

解:(1)∵一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)y2=(k為常數(shù),k≠0)的圖象相交于點(diǎn)A(1,3).
∴k=xy=1×3=3;
3=1+m,
解得:m=2;

(2)將兩函數(shù)聯(lián)立得:
解得:,
∴B點(diǎn)坐標(biāo)為:(-3,-1);

(3)利用圖象以及A,B點(diǎn)的坐標(biāo)可得出,
函數(shù)值y1≥y2的自變量x的取值范圍是:
x≥1或-3≤x≤0.
分析:(1)將點(diǎn)A(1,3),分別代入函數(shù)解析式,即可得出m,k的值;
(2)將兩函數(shù)解析式聯(lián)立求出交點(diǎn)坐標(biāo)即可;
(3)利用交點(diǎn)坐標(biāo)以及函數(shù)圖象得出函數(shù)值y1≥y2的自變量x的取值范圍即為一次函數(shù)在反比例函數(shù)圖象上面x的取值范圍求出即可.
點(diǎn)評(píng):此題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題以及利用函數(shù)圖象比較函數(shù)大小,利用數(shù)形結(jié)合得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出,當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.求:
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時(shí),x的值;
(3)寫出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過A、B兩點(diǎn),將點(diǎn)A向上平移1個(gè)單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點(diǎn)A、B,交x軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若點(diǎn)A的坐標(biāo)是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫出當(dāng)反比例函數(shù)的值小于一次函數(shù)的值時(shí)x 的取值范圍?

查看答案和解析>>

同步練習(xí)冊(cè)答案