【題目】在△ABC,AB=6,AC=8,BC=10,則該三角形為( )

A. 銳角三角形 B. 直角三角形 C. 鈍角三角形 D. 等腰直角三角形

【答案】B

【解析】試題分析:在△ABC中,AB=6,AC=8BC=10,推斷出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故選B

考點(diǎn): 勾股定理的逆定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A1(a1 , a2),A2(a2 , a3),A3(a3 , a4)…,An(an , an+1)(n為正整數(shù))都在一次函數(shù)y=x+3的圖象上.若a1=2,則a2014=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D是弧AE上一點(diǎn),且∠BDE=CBE,BDAE交于點(diǎn)F.

(1)求證:BC是⊙O的切線;

(2)若BD平分∠ABE,求證:DE2=DF·DB;

(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知l1∥l2 , AC、BC、AD為三條角平分線,則圖中與∠1互為余角的角有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是AD,BC的中點(diǎn).求證:
(1)△AFB≌△CED;
(2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=B=α,DEAC于點(diǎn)E,cosα= .下列結(jié)論:

①△ADE∽△ACD; ②當(dāng)BD=6時(shí),△ABD與△DCE全等;

③△DCE為直角三角形時(shí),BD為8; ④0<CE≤6.4.

其中正確的結(jié)論是____________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)定義兩種運(yùn)算“⊕”“*”.對(duì)于任意兩個(gè)整數(shù),a⊕b=a+b-1,a*b=a×b-1,(6⊕8)*(3⊕5)的結(jié)果是(

A. 60 B. 90 C. 112 D. 69

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積(直接用含m,n的代數(shù)式表示) 方法1:
方法2:
(2)根據(jù)(1)中結(jié)論,請(qǐng)你寫(xiě)出下列三個(gè)代數(shù)式之間的等量關(guān)系;代數(shù)式:(m+n)2 , (m﹣n)2 , mn
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:已知a+b=8,ab=7,求a﹣b和a2﹣b2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案