(2012•臺(tái)州模擬)如圖1,矩形OABC的頂點(diǎn)O為原點(diǎn),點(diǎn)E在AB上,把△CBE沿CE折疊,使點(diǎn)B落在OA邊上的點(diǎn)D處,點(diǎn)A、D坐標(biāo)分別為(10,0)和(6,0),拋物線過(guò)點(diǎn)C、B.
(1)求C、B兩點(diǎn)的坐標(biāo)及該拋物線的解析式;
(2)如圖2,長(zhǎng)、寬一定的矩形PQRS的寬PQ=1,點(diǎn)P沿(1)中的拋物線滑動(dòng),在滑動(dòng)過(guò)程中PQ∥x軸,且RS在PQ的下方,當(dāng)P點(diǎn)橫坐標(biāo)為-1時(shí),點(diǎn)S距離x軸個(gè)單位,當(dāng)矩形PQRS在滑動(dòng)過(guò)程中被x軸分成上下兩部分的面積比為2:3時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖3,動(dòng)點(diǎn)M、N同時(shí)從點(diǎn)O出發(fā),點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度沿折線ODC按O→D→C的路線運(yùn)動(dòng),點(diǎn)N以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCD按O?C?D的路線運(yùn)動(dòng),當(dāng)M、N兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S.①求出S與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍:②設(shè)S是①中函數(shù)S的最大值,那么S=______.

【答案】分析:(1)本題可根據(jù)折疊的性質(zhì)進(jìn)行求解.根據(jù)折疊的性質(zhì)可知:CD=BC=OA,可在直角三角形OCD中用勾股定理求出OC的長(zhǎng),即可求出C、B的坐標(biāo),將這兩點(diǎn)坐標(biāo)代入拋物線中即可求出拋物線的解析式.
(2)先根據(jù)x=-1時(shí),P的縱坐標(biāo)求出PS的長(zhǎng)即矩形的長(zhǎng),然后根據(jù)矩形被x軸分成上3下2兩部分,可求出此時(shí)P點(diǎn)的縱坐標(biāo),代入拋物線中即可求出P點(diǎn)的坐標(biāo).
(3)一:本題要分三種情況進(jìn)行討論:
①當(dāng)0≤t≤1時(shí),此時(shí)N在OC上.M在OD上.可用t表示出OM、ON的長(zhǎng),進(jìn)而可求出S、t的函數(shù)關(guān)系式.
②當(dāng)1<t≤2時(shí),此時(shí)N在CD上,M在OD上.過(guò)N作x軸的垂線,在構(gòu)建的直角三角形中,用ND的長(zhǎng)求出△OMN的高,而后同①.
③當(dāng)2<t≤時(shí),此時(shí),N、M均在CD上.先用t表示出NM的長(zhǎng),然后過(guò)O作OH⊥CD于H,在直角三角形OCH(或ODH)中,用OC的長(zhǎng)和∠OCD的正弦值求出△OMN中NM邊上的高.
二:根據(jù)一的函數(shù)的性質(zhì)及自變量的取值范圍即可求出S的最大值及對(duì)應(yīng)的t的值.
解答:解:(1)∵A(10,0),D(6,0),
∴OA=10,OD=6,
又∵四邊形OCBA為矩形,
∴∠COA=∠BAO=90°OC=AB=BC=OA=10.
又∵△CED為△CBE沿CE翻折得到的,
∴CD=CB=10,
∴在Rt△COD中,由勾股定理得:OC==8.
∴C(0,8),B(10,8),
又∵C、B均在y=x2+bx+c上,
,
,
∴y=x2-2x+8;

(2)當(dāng)x=-1時(shí),y=×(-1)2-2×(-1)+8=,
∴此時(shí)P(-1,),
又∵S距離x軸上方個(gè)單位,
∴PS=-=8,
∴矩形PQRS的長(zhǎng)為8,寬為1,
設(shè)PQRS在下滑過(guò)程中交x軸分別于G、H兩點(diǎn).
則由題意知:
,
∴PG=PS=
故P的縱坐標(biāo)為,
∴設(shè)P(a,),則a2-2a+8=,
∴a1=4,a2=6,(1分)
∴P(4,)或(6,);

(3)∵點(diǎn)M的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)N的速度是每秒8個(gè)單位長(zhǎng)度,
∴3t+8t=6+8+10,
解得t=,
①當(dāng)0≤t≤1時(shí),此時(shí)N在OC上.M在OD上.
∴S△OMN=OM•NH=×3t×8t=12t2,
此時(shí),當(dāng)t=1時(shí),S=12,
②當(dāng)1<t≤2時(shí),此時(shí)N在CD上,M在OD上.
則DN=18-8t,
過(guò)N作NH⊥OD于H,
=sin∠CDO==,
∴NH=DN=(18-8t)=(9-4t).
∴S△OMN=OM•ON,
=×(9-4t)×3t,
=-t2+t,
=-(t-2+
∴當(dāng)t=時(shí),S==12.15.
③當(dāng)2<t≤時(shí),此時(shí),N、M均在CD上,
則MN=24-11t,
過(guò)O作OH⊥CD于H,
則由等面積得:OH=,
∴S△OMN=OH•MN=××(24-11t)=-t+,
此時(shí)當(dāng)t=2時(shí),S=
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì)、圖形的折疊變換、圖形面積的求法以及二次函數(shù)的應(yīng)用等知識(shí).
綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州模擬)下列各式屬于最簡(jiǎn)二次根式的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州模擬)如圖,日食圖中表示太陽(yáng)和月亮的分別為兩個(gè)圓,這兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州模擬)某公園有一個(gè)亭子,它的地基是半徑為4m的正六邊形,則地基的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州模擬)已知二次函數(shù)y=ax2+bx+c的y與x的部分對(duì)應(yīng)值如下表:
x -1 0 2 4
y -2 1 3 1
則下列判斷①當(dāng)x=2時(shí),函數(shù)取得最大值3;②0<x<1時(shí),函數(shù)y隨x的增大而增大;③a+b+c<0;④存在x0滿足4<x0<5,當(dāng)x=x0時(shí),函數(shù)值為0.其中不正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州模擬)將拋物線y=x2-3向上平移一個(gè)單位后,得到的新拋物線的表達(dá)式是
y=x2-2
y=x2-2

查看答案和解析>>

同步練習(xí)冊(cè)答案