【題目】如圖所示,AB直徑,BC于點(diǎn)F,且交于點(diǎn)E,且∠AEC=ODB.

1)判斷直線的位置關(guān)系,并給出證明;

2)當(dāng)時(shí),求的面積.

【答案】1)直線的位置關(guān)系是相切.證明見(jiàn)解析;(2的面積是

【解析】

1)直線BD和⊙O的位置關(guān)系是相切,理由是由∠AEC=ABC,∠AEC=ODB,得到∠ABC=ODB,求出∠BOD+D=90°,推出∠OBD=90°,即可得到

2)根據(jù)垂徑定理得出BF=CF=BC=4,連接AC,由AB是圓的直徑得到∠ACB=DFB=90°,證出ACB∽△BED,根據(jù)相似三角形的性質(zhì)得到,求出ABC的面積,即可求出DFB的面積.

1)答:直線BD和⊙O的位置關(guān)系是相切,

證明:∵∠AEC=ABC,∠AEC=ODB

∴∠ABC=ODB,

OD⊥弦BC

∴∠OFB=90°,

∴∠DOB+ABC=90°,

∴∠BOD+D=90°,

∴∠OBD=180°-90°=90°

OB是半徑,

∴直線BD是圓O的切線,

即直線BD和⊙O的位置關(guān)系是相切;

2)解:∵,是圓的半徑,,

,,連接,

是圓的直徑,

,

,

,

的面積是,

的面積是,

答:的面積是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)邊長(zhǎng)分別為的正方形如圖放置(圖1),其未疊合部分(陰影)面積為;若再在圖1中大正方形的右下角擺放一個(gè)邊長(zhǎng)為的小正方形(如圖2),兩個(gè)小正方形疊合部分(陰影)面積為

1)用含、的代數(shù)式分別表示;

2)若,,求的值;

3)當(dāng)時(shí),求出圖3中陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】襄陽(yáng)臥龍大橋橫跨漢江,是我市標(biāo)志性建筑之一.某校數(shù)學(xué)興趣小組在假日對(duì)豎立的索塔在橋面以上的部分(上塔柱BC和塔冠BE)進(jìn)行了測(cè)量.如圖所示,最外端的拉索AB的底端A到塔柱底端C的距離為121m,拉索AB與橋面AC的夾角為37°,從點(diǎn)A出發(fā)沿AC方向前進(jìn)23.5m,在D處測(cè)得塔冠頂端E的仰角為45°.請(qǐng)你求出塔冠BE的高度(結(jié)果精確到0.1m.參考數(shù)據(jù)sin37°≈0.60,cos37°≈0.80tan37°≈0.75,≈1.41).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校初二學(xué)生每周上網(wǎng)的時(shí)間,兩位學(xué)生進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛(ài)好者中40名學(xué)生每周上網(wǎng)的時(shí)間;小杰從全校400名初二學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時(shí)間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:

時(shí)間段

(小時(shí)/周)

小麗抽樣

人數(shù)

小杰抽樣

人數(shù)

01

6

22

12

10

10

23

16

6

34

8

2

(每組可含最低值,不含最高值)

1)你認(rèn)為哪位同學(xué)抽取的樣本不合理?請(qǐng)說(shuō)明理由;

2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補(bǔ)畫完整;

3)專家建議每周上網(wǎng)2小時(shí)以上(含2小時(shí))的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)某網(wǎng)站調(diào)查,2019年網(wǎng)民最關(guān)注的熱點(diǎn)話題分別是:消費(fèi)、教育、環(huán)保、反腐及其他共五類,根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖如圖:

根據(jù)以上信息解答下列問(wèn)題:

1)請(qǐng)補(bǔ)全條形圖,并在圖中標(biāo)明相應(yīng)數(shù)據(jù).

2)若某市中心城區(qū)約有90萬(wàn)人口,請(qǐng)你估計(jì)該市中心城區(qū)最關(guān)注教育問(wèn)題的人數(shù)約有多少萬(wàn)人?

3)據(jù)統(tǒng)計(jì),2017年網(wǎng)民最關(guān)注教育問(wèn)題的人數(shù)所占百分比約為10%,則從2017年到2019年關(guān)注該問(wèn)題網(wǎng)民數(shù)的年平均增長(zhǎng)率約為多少?(已知2017~2019年每年接受調(diào)查的網(wǎng)民人數(shù)相同,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ ABCD中,點(diǎn)E、F在對(duì)角線BD上,且BEDF.

(1)求證:AECF;

(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù),,的圖象圍成陰影部分的面積是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在△ABC中,DE是邊AB的垂直平分線,分別交邊AB,AC于點(diǎn)DE,連接BE,點(diǎn)F在邊AC上,ABAF,連接BF

(1)求證:∠BEC2A;

(2)當(dāng)∠BFC108°時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC內(nèi)接于⊙OAB是⊙O的直徑,ODACADOC

1)求證:四邊形OCAD是平行四邊形;

2)若AD與⊙O相切,求∠B

查看答案和解析>>

同步練習(xí)冊(cè)答案