【題目】如圖,已知A(a,m)、B(2a,n)是反比例函數(shù)y=(k>0)與一次函數(shù)y=-x+b圖象上的兩個(gè)不同的交點(diǎn),分別過(guò)A、B兩點(diǎn)作x軸的垂線,垂足分別為C、D,連結(jié)OA、OB,若已知1≤a≤2,則求S△OAB的取值范圍.
【答案】2≤S△OAB≤8.
【解析】
試題分析:先根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo)特征得出m=,n=,=-a+b,=-a+b,于是k=a2,再由反比例函數(shù)系數(shù)k的幾何意義可知S△OAC=S△OBD,那么S△OAB=S△OAC-S△OBD+S梯形ABDC=S梯形ABDC=2a2,根據(jù)二次函數(shù)的性質(zhì)即可求解.
試題解析:∵A(a,m)、B(2a,n)在反比例函數(shù)y=(k>0)的圖象上,
∴m=,n=,
∵A(a,m)、B(2a,n)在一次函數(shù)y=-x+b圖象上,
∴=-a+b,=-a+b,
解得:k=a2,
∴S△OAB=S△OAC-S△OBD+S梯形ABDC
=S梯形ABDC
=(+)(2a-a)
=××a
=k
=×a2
=2a2.
當(dāng)1≤a≤2時(shí),S△OAB=2a2,隨自變量的增大而增大,此時(shí)2≤S△OAB≤8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,G是CD的中點(diǎn),E是邊長(zhǎng)AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線相交于點(diǎn)F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形.
(2)填空:若AB=3cm,BC=5cm,∠B=60°,則①當(dāng)AE= 時(shí),四邊形CEDF是矩形;②當(dāng)AE= 時(shí),四邊形CEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,E、F在菱形的邊BC,CD上.
(1)證明:BE=CF.
(2)當(dāng)點(diǎn)E,F(xiàn)分別在邊BC,CD上移動(dòng)時(shí)(△AEF保持為正三角形),請(qǐng)?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.
(3)在(2)的情況下,請(qǐng)?zhí)骄俊鰿EF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加省比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缦卤恚▎挝唬涵h(huán)):
根據(jù)表格中的數(shù)據(jù),可計(jì)算出甲、乙兩人的平均成績(jī)都是9(環(huán)).
(1)分別計(jì)算甲、乙六次測(cè)試成績(jī)的方差;
(2)根據(jù)數(shù)據(jù)分析的知識(shí),你認(rèn)為選 名隊(duì)員參賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線AD對(duì)應(yīng)的函數(shù)關(guān)系式為y=﹣2x﹣2,與拋物線交于點(diǎn)A(在x軸上),點(diǎn)D.拋物線與x軸另一交點(diǎn)為B(3,0),拋物線與y軸交點(diǎn)C(0,﹣6).
(1)求拋物線的解析式;
(2)如圖2,連結(jié)CD,過(guò)點(diǎn)D作x軸的垂線,垂足為點(diǎn)E,直線AD與y軸交點(diǎn)為F,若點(diǎn)P由點(diǎn)D出發(fā)以每秒1個(gè)單位的速度沿DE邊向點(diǎn)E移動(dòng),1秒后點(diǎn)Q也由點(diǎn)D出發(fā)以每秒3個(gè)單位的速度沿DC,CO,OE邊向點(diǎn)E移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng),點(diǎn)P的移動(dòng)時(shí)間為t秒,當(dāng)PQ⊥DF時(shí),求t的值;(圖3為備用圖)
(3)如果點(diǎn)M是直線BC上的動(dòng)點(diǎn),是否存在一個(gè)點(diǎn)M,使△ABM中有一個(gè)角為45°?如果存在,直接寫(xiě)出所有滿足條件的M點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在(3,0)和(4,0)之間,則下列結(jié)論:
①ac
②a﹣b+c>0;
③當(dāng)時(shí),y隨x的增大而增大
若(﹣,y1),(,y2)是拋物線上的兩點(diǎn),則y1y2;
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).
(1)求k、m的值;
(2)已知點(diǎn)P(n,n)(n>0),過(guò)點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過(guò)點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.
①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說(shuō)明理由;
②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)P是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(不與A,B重合),分別過(guò)A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系式 ;
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請(qǐng)畫(huà)出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=2,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com