【題目】某工廠現(xiàn)在平均每天比原計劃多生產50臺機器,現(xiàn)在生產600臺機器所需要的時間與原計劃生產450臺機器所需要的時間相同.
(1)原計劃平均每天生產多少臺機器?
(2)若該工廠要在不超過5天的時間,生產1100臺機器,則平均每天至少還要再多生產多少臺機器?
【答案】
(1)解:設原計劃平均每天生產x臺機器,則現(xiàn)在每天生產(x+50)臺機器,
解得,x=150,
經檢驗:x=150是原方程的根,
答:原計劃平均每天生產150臺機器;
(2)解:設平均每天至少還要再多生產y臺機器,
5×(200+x)≥1100
解得,x≥20,
答:平均每天至少還要再多生產20機器.
【解析】(1)根據(jù)題意可以列出相應的分式方程,從而可以求得原計劃平均每天生產的機器數(shù)量;(2)根據(jù)題意可以列出相應的不等式,從而可以求得平均每天至少還要再多生產多少臺機器.
【考點精析】利用分式方程的應用對題目進行判斷即可得到答案,需要熟知列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位).
科目:初中數(shù)學 來源: 題型:
【題目】某天早晨,王老師從家出發(fā),騎摩托車前往學校,途中在路旁一家飯店吃早餐,如圖所示的是王老師從家到學校這一過程中行駛路程s(千米)與時間t(分)之間的關系.
(1)學校離他家多遠?從出發(fā)到學校,用了多少時間?
(2)王老師吃早餐用了多少時間?
(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?最快時速達到多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,能用列舉法求得事件發(fā)生的概率的是( )
A.投一枚圖釘,“釘尖朝上”
B.一名籃球運動員在罰球線上投籃,“投中”
C.把一粒種子種在花盆中,“發(fā)芽”
D.同時拋擲兩枚質地均勻的骰子,“兩個骰子的點數(shù)相同”
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】上海世博會的某紀念品原價168元,連續(xù)兩次降價a%后售價為128元.下列所列方程中正確的( )
A.168(1+a%)=128B.168(1-a%)=128
C.168(1-2a%)=128D.168(1+2a%)=128
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為M的拋物線分別與x軸相交于點A,B(點A在點B的右側),與y軸相交于點C(0,﹣3).
(1)求拋物線的函數(shù)表達式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點N(點N與點M不重合),使得以點A,B,C,N為頂點的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,直線與x軸、y軸的交點分別為A、B,將∠OBA對折,使點O的對應點H落在直線AB上,折痕交x軸于點C.
(1)直接寫出點C的坐標,并求過A、B、C三點的拋物線的解析式;
(2)若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標;若不存在,說明理由;
(3)設拋物線的對稱軸與直線BC的交點為T,Q為線段BT上一點,直接寫出|QA﹣QO|的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線交x軸于A(﹣1,0)和B(5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉90°得到線段DE,過點E作直線l⊥x軸于H,過點C作CF⊥l于F.
(1)求拋物線解析式;
(2)如圖2,當點F恰好在拋物線上時,求線段OD的長;
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com