精英家教網 > 初中數學 > 題目詳情
若二次函數y=ax2+bx+a2-2(a,b為常數)的圖象如下,則a的值為( )

A.-2
B.-
C.1
D.
【答案】分析:由拋物線與y軸的交點判斷c與0的關系,進而得出a2-2的值,然后求出a值,再根據開口方向選擇正確答案.
解答:解:由圖象可知:拋物線與y軸的交于原點,
所以,a2-2=0,解得a=±,
由拋物線的開口向上
所以a>0,
∴a=-舍去,即a=
故選D.
點評:二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

若二次函數y=ax2+bx+c的圖象經過點(0,-1),(5,-1),則它的對稱軸方程是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

15、若二次函數y=ax2+2x+c的值總是負值,則
a<0,ac>0

查看答案和解析>>

科目:初中數學 來源: 題型:

(2010•河北區(qū)模擬)若二次函數y=ax2+bx+c(a≠0)的圖象與x軸有兩個不同的交點A(1,0)、B(-3,0),與y軸的負半軸交于點C,且S△ABC=6.
(Ⅰ)求該二次函數的解析式和頂點P的坐標;
(Ⅱ)經過A、B、P三點畫⊙O′,求⊙O′的面積;
(Ⅲ)設拋物線上有一動點M(a,b),連AM,BM,試判斷△ABM能否是直角三角形?若能,求出M點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1998•大連)若二次函數y=ax2+bx+c(a≠0)的圖象如圖,則直線y=bx-c不經過(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知點O為坐標原點,∠AOB=30°,∠B=90°,且點A的坐標為(2,0).
(1)求點B的坐標;
(2)若二次函數y=ax2+bx+c的圖象經過A,B,O三點,求此二次函數的解析式;
(3)在(2)中的二次函數圖象的OB段(不包括O,B點)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出點C的坐標及四邊形ABCO的最大面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案