【題目】連接AB,直線AB與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,平面內(nèi)有一點(diǎn)E(3,1),直線BE與x軸交于點(diǎn)F.直線AB的解析式記作y1=kx+b,直線BE解析式記作y2=mx+t.求:
(1)直線AB的解析式△BCF的面積;
(2)當(dāng)x 時(shí),kx+b>mx+t;
當(dāng)x 時(shí),kx+b<mx+t;
當(dāng)x 時(shí),kx+b=mx+t;
(3)在x軸上有一動(dòng)點(diǎn)H,使得△OBH為等腰三角形,求H的坐標(biāo).
【答案】(1).(2)>2;<2;=2.(3)(-,0)、(,0)、(4,0)或(,0).
【解析】
試題分析:(1)根據(jù)觀察圖象可以找出點(diǎn)B、C、D的坐標(biāo),根據(jù)待定系數(shù)法即可求出直線AB、BE的解析式,令y2=0即可求出點(diǎn)F的坐標(biāo),結(jié)合三角形的面積公式即可得出結(jié)論;
(2)當(dāng)直線AB的圖象在直線BE圖象上方時(shí),有kx+b>mx+t;當(dāng)直線AB的圖象在直線BE圖象下方時(shí),有kx+b<mx+t;二者相交時(shí),有kx+b=mx+t.結(jié)合圖象即可得出結(jié)論;
(3)設(shè)點(diǎn)H的坐標(biāo)為(n,0),用兩點(diǎn)間的距離公式找出OB、OH、BH的長(zhǎng)度,結(jié)合△OBH為等腰三角形的三種情況,即可求出n的值.
試題解析:(1)觀察函數(shù)圖象可知:
點(diǎn)C(-4,0),點(diǎn)D(0,2),點(diǎn)B(2,3),
將C、D點(diǎn)坐標(biāo)代入直線AB的解析式中,得,
解得:.
∴直線AB的解析式為y1=x+2.
將點(diǎn)B(2,3),E(3,1)代入到直線BE的解析式中,得,
解得:.
∴直線BE的解析式為y2=-2x+7.
令y2=0,則有-2x+7=0,解得m=,
即點(diǎn)F的坐標(biāo)為(,0).
∴CF=-(-4)=,
∴△BCF的面積S=×3CF=×3×=.
(2)結(jié)合函數(shù)圖象可知:
當(dāng)x>2時(shí),kx+b>mx+t;當(dāng)x<2時(shí),kx+b<mx+t;當(dāng)x=2時(shí),kx+b=mx+t.
(3)設(shè)點(diǎn)H的坐標(biāo)為(n,0).
∵點(diǎn)O(0,0),點(diǎn)B(2,3),
∴OB=,OH=|n|,BH=.
△OBH為等腰三角形分三種情況:
①當(dāng)OB=OH時(shí),即=|n|,解得:n=±,
此時(shí)點(diǎn)H的坐標(biāo)為(-,0)或(,0);
②當(dāng)OB=BH時(shí),即=,解得:n=0(舍去),或n=4.
此時(shí)點(diǎn)H的坐標(biāo)為(4,0);
③當(dāng)OH=BH時(shí),即|n|=,解得:n=.
此時(shí)點(diǎn)H的坐標(biāo)為(,0).
綜上可知:點(diǎn)H的坐標(biāo)為(-,0)、(,0)、(4,0)或(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(1,0),直線y=2x﹣1與y軸交于點(diǎn)C,與拋物線交于點(diǎn)C、D.
(1)求拋物線的解析式;
(2)求點(diǎn)A到直線CD的距離;
(3)平移拋物線,使拋物線的頂點(diǎn)P在直線CD上,拋物線與直線CD的另一個(gè)交點(diǎn)為Q,點(diǎn)G在y軸正半軸上,當(dāng)以G、P、Q三點(diǎn)為頂點(diǎn)的三角形為等腰直角三角形時(shí),求出所有符合條件的G點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB∥CD,點(diǎn)C在點(diǎn)D的右側(cè),∠ABC 、∠ADC的平分線交于點(diǎn)E(不與B,D點(diǎn)重合).∠ABC=n°,∠ADC=80°.
(1)若點(diǎn)B在點(diǎn)A的左側(cè),求∠BED的度數(shù)(用含n的代數(shù)式表示);
(2)將(1)中的線段BC沿DC方向平移,當(dāng)點(diǎn)B移動(dòng)到點(diǎn)A右側(cè)時(shí),請(qǐng)畫出圖形并判斷∠BED的度數(shù)是否改變.若改變,請(qǐng)求出∠BED的度數(shù)(用含n的代數(shù)式表示);若不變,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com