【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交,其中一個交點的橫坐標(biāo)是2

1)求反比例函數(shù)的表達(dá)式;

2)將一次函數(shù)的圖象向下平移2個單位,求平移后的圖象與反比例函數(shù)圖象的交點坐標(biāo);

3)直接寫出一個一次函數(shù),使其過點,且與反比例函數(shù)的圖象沒有公共點.

【答案】1;(2;(3(答案不唯一)

【解析】

1)將x=2代入一次函數(shù),求出其中一個交點是,再代入反比例函數(shù)即可解答;

2)先求出平移后的一次函數(shù)表達(dá)式,聯(lián)立兩個函數(shù)解析式得到一元二次方程即可解答;

3)設(shè)一次函數(shù)為y=ax+ba≠0),根據(jù)題意得到b=5,聯(lián)立一次函數(shù)與反比例函數(shù)解析式,得到,若無公共點,則方程無解,利用根的判別式得到,求出a的取值范圍,再在范圍內(nèi)任取一個a的值即可.

解:(1一次函數(shù)的圖象與反比例函數(shù)的圖象的一個交點的橫坐標(biāo)是2

當(dāng)時,

其中一個交點是

反比例函數(shù)的表達(dá)式是

2一次函數(shù)的圖象向下平移2個單位,

平移后的表達(dá)式是

聯(lián)立,可得一元二次方程

解得,

平移后的圖象與反比例函數(shù)圖象的交點坐標(biāo)為

3)設(shè)一次函數(shù)為y=ax+ba≠0),

∵經(jīng)過點,則b=5,

y=ax+5

聯(lián)立y=ax+5以及可得:,

若一次函數(shù)圖象與反比例函數(shù)圖象無交點,

,解得:,

(答案不唯一).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市總預(yù)算億元用三年時間建成一條軌道交通線.軌道交通線由線路設(shè)搬遷安置、輔助配套三項程組成.2015年開始,市政府在每年年初分別對三項工程進(jìn)行不同數(shù)額的投資.

2015年年初,對線路設(shè)、搬遷安置的投資分別是輔助配套投資的2倍、4.隨后兩年,線路設(shè)投資每年都增加億元,預(yù)計線路敷設(shè)三年總投資為54億元時會順利如期完工;搬遷安投資從2016年初開始遂年按同一百分?jǐn)?shù)遞減,依此規(guī)律, 2017年年初只需投資5億元,即可順利如期完工;輔助配套工程在2016年年初的投資在前一年基礎(chǔ)上的增長率線路設(shè)2016年投資增長率的1.5倍,2017年年初的投資比該項工程前兩年投資的總和還多4億元,若這樣,輔助配套工程也可以如期完工.經(jīng)測算,這三年的線路設(shè)、輔助配套工程的總投資資金之比達(dá)到3: 2.

(1)三年用于輔助配套的投資將達(dá)到多少億元?

(2)市政府2015年年初對三項工程的總投資是多少億元?

(3)求搬遷安置投資逐年遞減的百分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠將四種型號的空調(diào)銷售額的情況繪制成了圖①和圖②兩幅尚不完整的統(tǒng)計圖.

1)請補(bǔ)全圖②的條形統(tǒng)計圖;

2)為了應(yīng)對激烈的市場競爭,該廠決定降價促銷,四種型號的空調(diào)分別降價,因此該廠宣稱其產(chǎn)品平均降價,你認(rèn)為該廠的說法正確嗎?請通過計算說明理由;

3)為進(jìn)一步促銷,該廠決定從這四種型號的空調(diào)中任意選取兩種型號的空調(diào)降價銷售,請用樹狀圖或列表法求出降價空調(diào)中含D型號空調(diào)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,角與直尺交點,,則光盤的直徑是( )

A. 3 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OAB中,AOB=100°,OA=12,C是OB的中點,CDOB交于點D,以O(shè)C為半徑的交OA于點E,則圖中陰影部分的面積是( 。

A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形,點為對角線的中點.

1)問題解決:如圖①,連接,分別取的中點,,連接,則的數(shù)量關(guān)系是_____,位置關(guān)系是____

2)問題探究:如圖②,是將圖①中的繞點按順時針方向旋轉(zhuǎn)得到的三角形,連接,點,分別為,的中點,連接,.判斷的形狀,并證明你的結(jié)論;

3)拓展延伸:如圖③,是將圖①中的繞點按逆時針方向旋轉(zhuǎn)得到的三角形,連接,點,分別為,的中點,連接.若正方形的邊長為1,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC,ABC=90°,頂點A在第一象限,B、Cx軸的正半軸上(CB的右側(cè)),BC=3AB=4,若雙曲線交邊AB于點E,交邊AC于中點D

1)若OB=2,求k

2)若AE=, 求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是甘肅省博物館的鎮(zhèn)館之寶——銅奔馬,又稱馬踏飛燕,于196910月出土于武威市的雷臺漢墓,198310月被國家旅游局確定為中國旅游標(biāo)志,在很多旅游城市的廣場上都有馬踏飛燕雕塑,某學(xué)習(xí)小組把測量本城市廣場的馬踏飛燕雕塑(圖②)最高點離地面的高度作為一次課題活動,同學(xué)們制定了測量方案,并完成了實地測量,測得結(jié)果如下表:

課題

測量馬踏飛燕雕塑最高點離地面的高度

測量示意圖

如圖,雕塑的最高點到地面的高度為,在測點用儀器測得點的仰角為,前進(jìn)一段距離到達(dá)測點,再用該儀器測得點的仰角為,且點,,,,均在同一豎直平面內(nèi),點,,在同一條直線上.

測量數(shù)據(jù)

的度數(shù)

的度數(shù)

的長度

儀器)的高度

5

請你根據(jù)上表中的測量數(shù)據(jù),幫助該小組求出馬踏飛燕雕塑最高點離地面的高度(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2ax2aa為常數(shù)且不等于0)與x軸的交點為A,B兩點,且A點在B的右側(cè).

1)當(dāng)拋物線經(jīng)過點(38),求a的值;

2)求A、B兩點的坐標(biāo);

3)若拋物線的頂點為M,且點Mx軸的距離等于AB3倍,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案