在Rt⊿POQ中,OP=OQ=4,M是PQ中點(diǎn),把一三角尺的直角頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與⊿POQ的兩直角邊分別交于點(diǎn)A、B,

(1)求證:MA=MB

(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,⊿AOB的周長是否存在最小值,若存在,求出最小值,若不存在。請說明理由。


(1)證明:連接OM  ∵ Rt⊿POQ中,OP=OQ =4,M是PQ的中點(diǎn)

∴OM=PM=PQ=2

∠POM=∠BOM=∠P=450  ∵∠PMA+∠AMO=∠OMB+∠AMO

∴∠PMA=∠OMB   ⊿PMA≌⊿OMB  ∴ MA=MB

(2)解:⊿AOB的周長存在最小值

理由是: ⊿PMA≌⊿OMB  ∴ PA=OB 

 ∴OA+OB=OA+PA=OP=4

令OA=x  AB=y則y2=x2+(4-x)2=2x2-8x+16

=2(x-2)2+8≥8

當(dāng)x=2時y2有最小值=8從而 y≥2

故⊿AOB的周長存在最小值,其最小值是4+2新 課標(biāo) 第 一網(wǎng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中點(diǎn),把一三角尺的直角頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B.
(1)求證:MA=MB;
(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,△AOB的周長是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在Rt△POQ中,∠POQ=90°,OP:OQ=3:2,點(diǎn)Q在反比例函數(shù)y=
4
x
圖象上,點(diǎn)P在反比例函數(shù)y=
k
x
圖象上,則k的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△POQ中,OP=OQ=5,M是PQ的中點(diǎn),把一三角尺的直角頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B.
(1)求證:MA=MB;
(2)探究:在旋轉(zhuǎn)三角尺的過程中,四邊形AOBM的面積是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,請求出四邊形AOBM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰初級中學(xué)九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:填空題

探究:如圖,在Rt△POQ中OP=OQ=4,將一把三角尺的直角頂點(diǎn)放在PQ中點(diǎn)M處,以M為旋轉(zhuǎn)中心旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B,連接AB,則△AOB周長的最小值是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆山東省濰坊市九年級復(fù)習(xí)模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

在Rt△POQ中,OP=OQ=4,M是PQ的中點(diǎn),把一三角尺的直角頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B.
 
(1)求證:MA=MB;
(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,△AOB的周長是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案