【題目】如圖,在ABC中,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),過(guò)點(diǎn)AAFBCDE的延長(zhǎng)線于F點(diǎn),連接ADCF

1)求證:四邊形ADCF是平行四邊形;

2)當(dāng)ABC滿足什么條件時(shí),四邊形ADCF是正方形?請(qǐng)說(shuō)明理由.

【答案】(1)證明見解析;(2)等腰直角三角形.

【解析】試題分析

(1)先證四邊形ABDF是平行四邊形,再證結(jié)論;

(2)由四邊形ADCF是正方形來(lái)證明△ABC是等腰直角三角形.

試題解析

(1)證明:點(diǎn)D、E分別是邊BC、AC的中點(diǎn),∴DE∥AB,

∵AF∥BC,∴四邊形ABDF是平行四邊形,∴AF=BD,則AF=DC=AD,

∵AF∥BC,∴四邊形ADCF是平行四邊形;

(2)當(dāng)△ABC是等腰直角三角形時(shí),四邊形ADCF是正方形,

理由:四邊形ADCF是正方形,∴∠ADC=90°,AC=DF,AF=DC.

點(diǎn)D,E分別是邊BC,AC的中點(diǎn),AB=2DE,∴AB=DF,所以AB=AC.

四邊形ABDF是平行四邊形,∴AF=BD,∴BD=CD=AD,

∴∠BAC=90°,

△ABC是等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一位籃球運(yùn)動(dòng)員在離籃圈水平距離為4m處跳起投籃,球沿一條拋物線運(yùn)行,當(dāng)球運(yùn)行的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心離地面距離為3.05m.

(1)建立如圖所示的直角坐標(biāo)系,求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)若該運(yùn)動(dòng)員身高1.8m,這次跳投時(shí),球在他頭頂上方0.25m處出手.問(wèn):球出手時(shí),他跳離地面多高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中, .如圖,將進(jìn)行折疊,使點(diǎn)落在線段上(包括點(diǎn)和點(diǎn)),設(shè)點(diǎn)的落點(diǎn)為,折痕為,當(dāng)是等腰三角形時(shí),點(diǎn)可能的位置共有( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過(guò)點(diǎn)DDE⊥AB,DF⊥AC,,垂足分別為EF.

(1)求證:△BED≌△CFD;

(2)∠A=90°,求證:四邊形DFAE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,∠3=∠E,∠4=∠5,請(qǐng)判斷AD與BC的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠3=4,要說(shuō)明ABC≌△DCB,

1)若以“SAS”為依據(jù),則需添加一個(gè)條件是________

2)若以“AAS”為依據(jù),則需添加一個(gè)條件是________

3)若以“ASA”為依據(jù),則需添加一個(gè)條件是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

)在軸上是否存在點(diǎn),使為等腰三角形,求出點(diǎn)坐標(biāo).

)在軸上方存在點(diǎn),使以點(diǎn), 為頂點(diǎn)的三角形與全等,畫出并請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以ABCD的頂點(diǎn)A為圓心,AB為半徑作圓,分別交BCADE、F,若D=50°,求的度數(shù)和的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為

1)求袋子中白球的個(gè)數(shù);(請(qǐng)通過(guò)列式或列方程解答)

2)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)

查看答案和解析>>

同步練習(xí)冊(cè)答案