【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線BD上的點(diǎn),1=2

(1)求證:BE=DF;

(2)求證:AFCE

【答案】1)(2)證明見(jiàn)解析

【解析】

試題分析:(1)利用平行四邊形的性質(zhì)得出5=3,AEB=4,進(jìn)而利用全等三角形的判定得出即可;

(2)利用全等三角形的性質(zhì)得出AE=CF,進(jìn)而得出四邊形AECF是平行四邊形,即可得出答案.

證明:(1)四邊形ABCD是平行四邊形,

AB=CD,ABCD,

∴∠5=3,

∵∠1=2,

∴∠AEB=4,

ABECDF中,

,

∴△ABE≌△CDF(AAS),

BE=DF;

(2)由(1)得ABE≌△CDF,

AE=CF,

∵∠1=2

AECF,

四邊形AECF是平行四邊形,

AFCE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若下列各組值代表線段的長(zhǎng)度,以它們?yōu)檫吥軜?gòu)成三角形的是(  )

A. 6、13、7 B. 6、6、12 C. 6、10、3 D. 6、9、13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在O的直徑AB的延長(zhǎng)線上,點(diǎn)C在O上,AC=CD,ACD=120°

(1)求證:CD是O的切線;

(2)若O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ABC=90°,BC=1,AC=

(1)以點(diǎn)B為旋轉(zhuǎn)中心,將ABC沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到A′BC′,請(qǐng)畫(huà)出變換后的圖形;

(2)求點(diǎn)A和點(diǎn)A′之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(3a+2)(4a2a-1)的結(jié)果中二次項(xiàng)系數(shù)是( )

A. -3 B. 8 C. 5 D. -5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y1=x2+2x+m﹣5.

(1)如果該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;

(2)如果該二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(1,0),求它的表達(dá)式和點(diǎn)C的坐標(biāo);

(3)如果一次函數(shù)y2=px+q的圖象經(jīng)過(guò)點(diǎn)A、C,請(qǐng)根據(jù)圖象直接寫(xiě)出y2<y1時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P以每秒一個(gè)單位的速度從點(diǎn)A出發(fā),沿對(duì)角線AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同的速度從點(diǎn)C出發(fā),沿邊CB向點(diǎn)B移動(dòng).設(shè)PQ兩點(diǎn)移動(dòng)時(shí)間為t秒(0≤t≤4).

1)用含t的代數(shù)式表示線段PC的長(zhǎng)是 ;

2)當(dāng)△PCQ為等腰三角形時(shí),求t的值;

3)以BQ為直徑的圓交PQ于點(diǎn)M,當(dāng)MPQ的中點(diǎn)時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P以每秒一個(gè)單位的速度從點(diǎn)A出發(fā),沿對(duì)角線AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同的速度從點(diǎn)C出發(fā),沿邊CB向點(diǎn)B移動(dòng).設(shè)P,Q兩點(diǎn)移動(dòng)時(shí)間為t秒(0≤t≤4).

(1)用含t的代數(shù)式表示線段PC的長(zhǎng)是 ;

(2)當(dāng)PCQ為等腰三角形時(shí),求t的值;

(3)以BQ為直徑的圓交PQ于點(diǎn)M,當(dāng)M為PQ的中點(diǎn)時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“全等三角形的面積相等”的條件是____________________,結(jié)論是______________________

查看答案和解析>>

同步練習(xí)冊(cè)答案