【題目】如圖,已知,⊙O的半徑,弦AB,CD交于點(diǎn)E,C的中點(diǎn),過(guò)D點(diǎn)的直線(xiàn)交AB延長(zhǎng)線(xiàn)與點(diǎn)F,且DF=EF

1)如圖①,試判斷DF與⊙O的位置關(guān)系,并說(shuō)明理由;

2)如圖②,連接AC,若ACDFBE=AE,求CE的長(zhǎng).

【答案】1DF與⊙O相切,理由見(jiàn)解析;(2CE=2

【解析】

1)如圖,作輔助線(xiàn);證明∠ODC+∠CDF=90°,即可解決問(wèn)題.

2)如圖,作輔助線(xiàn);證明OHAB,AH=4λ,此為解題的關(guān)鍵性結(jié)論;證明CE=λ;列出方程r2=(r-3λ)2+(4λ)2,求出λ=r=×=2,即可解決問(wèn)題.

1DF與⊙O相切.

如圖1,連接OC、OD;

C為弧AB的中點(diǎn),

OCAB,∠OCE+∠AEC=90°;

DF=EF,

∴∠FDE=FED=AEC;

OA=OC,

∴∠OCE=ODC,

∴∠ODC+∠CDF=90°,

ODDF

DF與⊙O相切.

2)如圖2,連接OA、OC;

由(1)知OCAB

AH=BH;

ACDF,

∴∠ACD=CDF;而EF=DF,

∴∠DEF=CDF=ACD,

AC=AE;

設(shè)AE=5λ,則BE=3λ,

∴AH=4λ,HE=λ,AC=AE=5λ;

∴由勾股定理得:CH=3λ;

CE2=CH2+HE2=9λ22,

CE=λ;

在直角△AOH中,由勾股定理得:

AO2=AH2+OH2,

r2=(r-3λ)2+(4λ)2,

解得:λ=r=×=2

CE=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海南建省30年來(lái),各項(xiàng)事業(yè)取得令人矚目的成就,以2016年為例,全省社會(huì)固定資產(chǎn)總投資約3730億元,其中包括中央項(xiàng)目、省屬項(xiàng)目、地(市)屬項(xiàng)目、縣(市)屬項(xiàng)目和其他項(xiàng)目.圖1、圖2分別是這五個(gè)項(xiàng)目的投資額不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)完成下列問(wèn)題:

(1)在圖1中,先計(jì)算地(市)屬項(xiàng)目投資額為多少億元,然后將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)在圖2中,縣(市)屬項(xiàng)目部分所占百分比為m%、對(duì)應(yīng)的圓心角為β,求m的值,β等于多少度(m、β均取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)A、C分別是∠B的兩條邊上的點(diǎn),點(diǎn)D、E分別是直線(xiàn)BABC上的點(diǎn),直線(xiàn)AECD相交于點(diǎn)P

1)點(diǎn)D、E分別在線(xiàn)段BABC上;

①若∠B60°(如圖1),且ADBEBDCE,則∠APD的度數(shù)為   

②若∠B90°(如圖2),且ADBC,BDCE,求∠APD的度數(shù);

2)如圖3,點(diǎn)D、E分別在線(xiàn)段ABBC的延長(zhǎng)線(xiàn)上,若∠B90°,ADBC,∠APD45°,求證:BDCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB⊙O的直徑,C、D⊙O上的點(diǎn),且OC∥BD, AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是(

A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤

C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,AB=6BC=8,∠BAC與∠ACB的平分線(xiàn)相較于點(diǎn)E,過(guò)點(diǎn)EEFBCAC于點(diǎn)F,則EF的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC, ,,直線(xiàn)l從與AC重合的位置開(kāi)始以每秒個(gè)單位的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于DE兩點(diǎn),動(dòng)點(diǎn)FA開(kāi)始沿折線(xiàn)ACCBBA運(yùn)動(dòng),點(diǎn)FACCB,BA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位,點(diǎn)F與直線(xiàn)l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)F第一次回到點(diǎn)A時(shí),點(diǎn)F與直線(xiàn) l同時(shí)停止運(yùn)動(dòng).運(yùn)動(dòng)過(guò)程中,作點(diǎn)F關(guān)于直線(xiàn)DE的對(duì)稱(chēng)點(diǎn),記為點(diǎn),若形成的四邊形 為菱形,則所有滿(mǎn)足條件的之和為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△AOB中,∠AOB=90°,點(diǎn)A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=-x+4的圖象與反比例函數(shù)y=k為常數(shù),且k0)的圖象交于A1,a),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)結(jié)合圖象直接寫(xiě)出不等式-x+4的解集

3)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿(mǎn)足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,以 AD為直徑作⊙O,⊙O分別交AB、AC于 E、F.

(1)求證:BE=CF;

(2)設(shè) AD、EF相交于G,若 EF=8,⊙O的半徑為5,求DG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案