精英家教網(wǎng)如圖所示,O為直線AB上一點,OM平分∠AOC,ON平分∠BOC,則圖中互余的角有( 。
A、1對B、2對C、3對D、4對
分析:根據(jù)角平分線的定義余角和補角的性質(zhì)求得.
解答:解:由OM平分∠AOC,ON平分∠BOC可知∠AOM=∠MOC,∠CON=∠BON
∴∠MOC+∠CON=∠AOM+∠BON=
180°
2
=90°
∴∠MOC+∠CON=90°,∠AOM+∠BON=90°,∠AOM+∠CON=90°,∠MOC+∠BON=90°
共4對,故選D.
點評:本題主要考查平分線的性質(zhì),由已知能夠注意到∠MOC+∠CON=∠AOM+∠BON=90°是解決的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=1,則下列結(jié)論:
①4a+2b+c<0;
②方程ax2+bx+c=0兩根之和小于零;
③當(dāng)x≥1時,y隨x的增大而增大,
④abc>0.其中正確的有
 
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=2,若與x軸交點為A(6,0),則由圖象可知,當(dāng)y>0時,自變量x的取值范圍是
-2<x<6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,O為直線AB上一點,過O點作射線OC.已知OD平分∠AOC、OE平分∠BOC,請問OD與OE有什么位置關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案