【題目】某景區(qū)有一圓形人工湖,為測(cè)量該湖的半徑,小明和小麗沿湖邊選取,三棵小樹(如圖所示),使得,之間的距離與之間的距離相等,并測(cè)得長(zhǎng)為米,的距離為米,則人工湖的半徑為________米.

【答案】

【解析】

設(shè)圓心為點(diǎn)O,連接OBOA,AB=AC,得出=再根據(jù)等弦對(duì)等弧,得出點(diǎn)A是弧BC的中點(diǎn).結(jié)合垂徑定理的推論,OA垂直平分弦.在RtBDO利用勾股定理,即可求得圓的半徑

設(shè)圓心為點(diǎn)O連接OB,OA,OA交線段BC于點(diǎn)D

AB=AC,=,OABCBD=DC=BC=100,由題意,DA=5

RtBDOOB2=OD2+BD2,設(shè)OB=x,x2=(x52+1002

解得x=1002.5

故人工湖的半徑為1002.5

故答案為:1002.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張平行四邊形紙片ABCD沿著線段EF折疊(點(diǎn)E、F分別在AB邊和BC邊上),使得點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)G出。

(1)如果連接EC,那么線段GEEC在同一條直線上嗎?為什么?

(2)試判斷四邊形AFCE的形狀,并說明你是怎樣判斷的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn).

1)若函數(shù)圖象經(jīng)過原點(diǎn),求kb的值

2)若點(diǎn)是該函數(shù)圖象上的點(diǎn),當(dāng)時(shí),總有,且圖象不經(jīng)過第三象限,求k的取值范圍.

3)點(diǎn)在函數(shù)圖象上,若,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)CCF平分∠DCEDE于點(diǎn)F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的直徑,,、分別與圓相交于,那么下列等式中一定成立的是(

A. AEBF=AFCF B. AEAB=AOAD'

C. AEAB=AFAC D. AEAF=AOAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,外接圓,的內(nèi)心.

的長(zhǎng);

的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)鏈接將兩個(gè)含30°角的全等三角尺放在一起,讓兩個(gè)30°角合在一起成60°,經(jīng)過拼湊、觀察、思考,探究出“直角三角形中30°角所對(duì)的直角邊等于斜邊的一半”結(jié)論

如圖等邊三角形ABC的邊長(zhǎng)為4cm點(diǎn)D從點(diǎn)C出發(fā)沿CAA運(yùn)動(dòng),點(diǎn)EB出發(fā)沿AB的延長(zhǎng)線BF向右運(yùn)動(dòng)已知點(diǎn)D、E都以每秒0.5cm的速度同時(shí)開始運(yùn)動(dòng),運(yùn)動(dòng)過程中DEBC相交于點(diǎn)P,設(shè)運(yùn)動(dòng)時(shí)間為x

1)請(qǐng)直接寫出AD長(zhǎng).(用x的代數(shù)式表示)

2)當(dāng)△ADE為直角三角形時(shí),運(yùn)動(dòng)時(shí)間為幾秒?

2)求證在運(yùn)動(dòng)過程中,點(diǎn)P始終為線段DE的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形中,,,四邊形的三個(gè)頂點(diǎn)、、分別在矩形、上,

如圖,當(dāng)四邊形為正方形時(shí),求的面積;

如圖,當(dāng)四邊形為菱形時(shí),設(shè),的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=ACAHBC,點(diǎn)EAH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FH=EH.

(1)求證:四邊形EBFC是菱形;

(2)如果∠BAC=ECF,求證:ACCF.

查看答案和解析>>

同步練習(xí)冊(cè)答案