【題目】88層的金茂大廈的電梯上,有顯示樓層的液晶屏,如圖,可顯示01,02,…,88,由于屏幕受到損壞,顯示左邊數(shù)字的7根線段中有1根不能亮了,顯示右邊數(shù)字的7根線段中有3根不能亮了。請(qǐng)問(wèn):電梯在運(yùn)行的過(guò)程中,最多還有 _____個(gè)樓層的數(shù)字顯示是正確的

(說(shuō)明)數(shù)字0、1、2、3、4、5、6、7、8、9顯示方式如下圖所示

【答案】12.

【解析】

解:左邊少了一根,最多能正確顯示6個(gè)數(shù)字,分別是1;3;4;5;7;9;少了最左下邊的一根右邊少了三根,最多能正確顯示2個(gè)數(shù)字,分別是1;7,除了4外,其它字母都要5根或5根以上的才能組成,少了3根,只有4根,所以最多只能有數(shù)字17能正確顯示;

所以左右兩邊可以組成11,17,31,37,41,47,51,57,71,77,91,97,這12個(gè)數(shù)字還能正確顯示.故答案為:12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)八年級(jí)的籃球隊(duì)有名隊(duì)員.在罰籃投球訓(xùn)練中,這名隊(duì)員各投籃次的進(jìn)球情況如下表:

進(jìn)球數(shù)

人數(shù)

針對(duì)這次訓(xùn)練,請(qǐng)解答下列問(wèn)題:

名隊(duì)員進(jìn)球數(shù)的平均數(shù)是________,中位數(shù)是________;

求這支球隊(duì)罰籃命中率.罰籃命中率(進(jìn)球數(shù)投籃次數(shù))________;

若隊(duì)員小亮的罰籃命中率為,請(qǐng)你分析小亮在這支球隊(duì)中的罰籃水平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.

(1)1+3+32+33+34+35+36的值;

(2)1+a+a2+a3+…+a2013(a≠0a≠1)的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從圖 2 開始,每一個(gè)圖形都是由基本圖形通過(guò)平移或翻折拼成的:

觀察發(fā)現(xiàn),圖 10 中共有_________________個(gè)小三角形, n 共有____________個(gè)小三角形,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的三條角平分線相交于點(diǎn)I,過(guò)點(diǎn)IDIIC,交AC于點(diǎn)D.

(1)如圖①,求證:∠AIB=ADI;

(2)如圖②,延長(zhǎng)BI,交外角∠ACE的平分線于點(diǎn)F.

①判斷DICF的位置關(guān)系,并說(shuō)明理由;

②若∠BAC=70°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,ABAC,點(diǎn)DBC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊ABAC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AECF;③△BDE≌△ADF;BECFEF,其中正確結(jié)論是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的限距點(diǎn)的定義如下:若P′為直線PC與⊙C的一個(gè)交點(diǎn),滿足r≤PP′≤2r,則稱P′為點(diǎn)P關(guān)于⊙C的限距點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的限距點(diǎn)P′的示意圖.

(1)當(dāng)⊙O的半徑為1時(shí).
①分別判斷點(diǎn)M(3,4),N( ,0),T(1, )關(guān)于⊙O的限距點(diǎn)是否存在?若存在,求其坐標(biāo);
②點(diǎn)D的坐標(biāo)為(2,0),DE,DF分別切⊙O于點(diǎn)E,點(diǎn)F,點(diǎn)P在△DEF的邊上.若點(diǎn)P關(guān)于⊙O的限距點(diǎn)P′存在,求點(diǎn)P′的橫坐標(biāo)的取值范圍;
(2)保持(1)中D,E,F(xiàn)三點(diǎn)不變,點(diǎn)P在△DEF的邊上沿E→F→D→E的方向運(yùn)動(dòng),⊙C的圓心C的坐標(biāo)為(1,0),半徑為r,請(qǐng)從下面兩個(gè)問(wèn)題中任選一個(gè)作答.

問(wèn)題1

問(wèn)題2

若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′存在,且P′隨點(diǎn)P的運(yùn)動(dòng)所形成的路徑長(zhǎng)為πr,則r的最小值為

若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′不存在,則r的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對(duì)稱軸,且斜邊上的點(diǎn)D為另一塊三角板DMN的直角頂點(diǎn),DM、DN分別交ABAC于點(diǎn)E、F.則下列四個(gè)結(jié)論:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四邊形AEDFBC2.其中正確結(jié)論是_____(填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案