【題目】如圖所示,在的網(wǎng)格內(nèi)填入1至6的數(shù)字后,使每行、每列、每個(gè)小粗線框中的數(shù)字不重復(fù),則_____.
【答案】3
【解析】
粗線把這個(gè)數(shù)獨(dú)分成了6塊,為了便于解答,對(duì)各部分進(jìn)行編號(hào):甲、乙、丙、丁、戊、己,先從各部分中數(shù)字最多的己出發(fā),找出其各個(gè)小方格里面的數(shù),再根據(jù)每行、每列、每小宮格都不出現(xiàn)重復(fù)的數(shù)字進(jìn)行推算.
對(duì)各個(gè)小宮格編號(hào)如下:
先看己:已經(jīng)有了數(shù)字3、5、6,缺少1、2、4;觀察發(fā)現(xiàn):4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;則b和c有一個(gè)是1,有一個(gè)是4,不確定,如下:
觀察上圖發(fā)現(xiàn):第四列已經(jīng)有數(shù)字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:
再看乙部分:已經(jīng)有了數(shù)字1、2、3,缺少數(shù)字4、5、6,觀察上圖發(fā)現(xiàn):5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不確定,
分兩種情況:
①當(dāng)4在第一行時(shí),6在第二行;那么第二行第二列就是4,如下:
再看甲部分:已經(jīng)有了數(shù)字1、3、4、5,缺少數(shù)字2、6,觀察上圖發(fā)現(xiàn):2不能在第三列,所以2在第二列,則6在第三列的第一行,如下:
觀察上圖可知:第三列少1和4,4不能在第三行,所以4在第五行,則1在第三行,如下:
觀察上圖可知:第五行缺少1和2,1不能在第1列,所以1在第五列,則2在第一列,即c=1,所以b=4,如下:
觀察上圖可知:第六列缺少1和2,1不能在第三行,則在第四行,所以2在第三行,如下:
再看戊部分:已經(jīng)有了數(shù)字2、3、4、5,缺少數(shù)字1、6,觀察上圖發(fā)現(xiàn):1不能在第一列,所以1在第二列,則6在第一列,如下:
觀察上圖可知:第一列缺少3和4,4不能在第三行,所以4在第四行,則3在第三行,如下:
觀察上圖可知:第二列缺少5和6,5不能在第四行,所以5在第三行,則6在第四行,如下:
觀察上圖可知:第三行第五列少6,第四行第五列少3,如下:
所以,a=2,c=1,a+c=3;
②當(dāng)6在第一行,4在第二行時(shí),那么第二行第二列就是6,如下:
再看甲部分:已經(jīng)有了數(shù)字1、3、5、6,缺少數(shù)字2、4,觀察上圖發(fā)現(xiàn):2不能在第三列,所以2在第2列,4在第三列,如下:
觀察上圖可知:第三列缺少數(shù)字1和6,6不能在第五行,所以6在第三行,則1在第五行,所以c=4,b=1,如下:
觀察上圖可知:第五列缺少數(shù)字3和6,6不能在第三行,所以6在第四行,則3在第三行,如下:
觀察上圖可知:第六列缺少數(shù)字1和2,2不能在第四行,所以2在第三行,則1在第四行,如下:
觀察上圖可知:第三行缺少數(shù)字1和5,1和5都不能在第一列,所以此種情況不成立;
綜上所述:a=2,c=1,
∴a+c=3;
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出200件.如果每件商品的售價(jià)每上漲2元,則每個(gè)月少賣5件,設(shè)每件商品的售價(jià)為x元,則可賣y件,每個(gè)月銷售利潤(rùn)為w元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程(2m+1)x2+4mx+2m﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線 與軸、軸分別交于點(diǎn)A、B如圖所示,點(diǎn)在線段的延長(zhǎng)線上,且.
(1)用含字母的代數(shù)式表示點(diǎn)的坐標(biāo);
(2)拋物線y經(jīng)過(guò)點(diǎn)、,求此拋物線的表達(dá)式;
(3)在第(2)題的條件下,位于第四象限的拋物線上,是否存在這樣的點(diǎn):使,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長(zhǎng)1尺(AB=1尺=10寸)”,問(wèn)這塊圓形木材的直徑是多少?”
如圖所示,請(qǐng)根據(jù)所學(xué)知識(shí)計(jì)算:圓形木材的直徑AC是( )
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,4)、Q(m,n)在函數(shù)y=(k>0)的圖象上,當(dāng)m>1時(shí),過(guò)點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A、B;過(guò)點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、D,QD交PA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積( )
A. 增大 B. 減小
C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知AB⊥BC于點(diǎn)B,底座BC的長(zhǎng)為1米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點(diǎn)E,已知AH長(zhǎng)米,HF長(zhǎng)米,HE長(zhǎng)1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,過(guò)點(diǎn)A的圓O交邊AB于點(diǎn)E,交邊AD于點(diǎn)F,已知AD=5,AE=2,AF=4.如果以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),那么r的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)某種電子產(chǎn)品共件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為.
(1)該批產(chǎn)品有正品 件;
(2)如果從中任意取出件,利用列表或樹(shù)狀圖求取出件都是正品的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com