【題目】已知二次函數(shù)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2-4ac>0;②a>0;③c>0;④9a+3b+c<0。其中結(jié)論正確的有( )

A. 2個 B. 3個 C. 4個 D. 5個

【答案】B

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點判斷c0的關(guān)系,然后根據(jù)拋物線與x軸交點及x=3時二次函數(shù)的值的情況進行推理,進而對所得結(jié)論進行判斷.

①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以=b2-4ac>0;故①正確;

②根據(jù)圖示知,該函數(shù)圖象的開口向上,

a>0;

故②正確;

③該函數(shù)圖象交于y軸的負半軸,

c<0;

故本選項錯誤;

④根據(jù)拋物線的對稱軸方程可知:(-1,0)關(guān)于對稱軸的對稱點是(3,0);

當(dāng)x=-1時,y<0,所以當(dāng)x=3時,也有y<0,即9a+3b+c<0;故④正確.

所以①②④正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:某物業(yè)公司接收管理某小區(qū)后,準備進行綠化建設(shè),現(xiàn)要將一塊四邊形的空地(如圖5,四邊形ABCD)鋪上草皮,但由于年代久遠,小區(qū)規(guī)劃書上該空地的面積數(shù)據(jù)看不清了,僅僅留下兩條對角線AC,BD的長度分別為20cm,30cm及夾角∠AOB60°,你能利用這些數(shù)據(jù),幫助物業(yè)人員求出這塊空地的面積嗎?

問題顯然,要求四邊形ABCD的面積,只要求出ABDBCD(也可以是ABCACD)的面積,再相加就可以了.

建立模型:我們先來解決較簡單的三角形的情況:

如圖1,ABC中,OBC上任意一點(不與B,C兩點重合),連接OA,OA=a,BC=b,AOB=α(αOABC所夾較小的角),試用a,b,α表示ABC的面積.

解:如圖2,作AMBC于點M,

∴△AOM為直角三角形.

又∵∠AOB=α,sinα=AM=OAsinα

∴△ABC的面積=BCAM=BCOAsinα=absinα.

問題解決:請你利用上面的方法,解決物業(yè)公司的問題.

如圖3,四邊形ABCD中,O為對角線AC,BD的交點,已知AC=20m,BD=30m,AOB=60°,求四邊形ABCD的面積.(寫出輔助線作法和必要的解答過程)

新建模型:若四邊形ABCD中,O為對角線AC,BD的交點,已知AC=a,BD=b,AOB=α(αOABC所夾較小的角),直接寫出四邊形ABCD的面積=   

模型應(yīng)用:如圖4,四邊形ABCD中,AB+CD=BC,ABC=BCD=60°,已知AC=a,則四邊形ABCD的面積為多少?(新建模型中的結(jié)論可直接利用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,BC=2,BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM、ON上滑動,下列結(jié)論:

若C、O兩點關(guān)于AB對稱,則OA=2;

C、O兩點距離的最大值為4;

若AB平分CO,則AB⊥CO;

斜邊AB的中點D運動路徑的長為;

其中正確的是_____(把你認為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為等腰直角三角形,,點DAB邊上(不與點A、B重合),以CD為腰作等腰直角,.

1)如圖1,作F,求證:;

2)在圖1中,連接AEBCM,求的值。

3)如圖2,過點ECB的延長線于點H,過點D,交AC于點G,連接GH當(dāng)點D在邊AB上運動時,式子的值會發(fā)生變化嗎?若不變,求出該值:若變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請你解答下列問題:

出廠價

成本價

排污處理費

甲種塑料

2100(元/噸)

800(元/噸)

200(元/噸)

乙種塑料

2400(元/噸)

1100(元/噸)

100(元/噸)

另每月還需支付設(shè)備管理、維護費20000

(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1y2x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);

(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時,獲得的總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計算:

喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?

當(dāng)=5時,y=45.求k的值.

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 y=-2x4分別與 y 軸、x 軸交于點 A、點 B,點 C 的坐標為(2,0),D 為線段 AB上一動點,連接 CD y 軸于點 E

1)求出點 A、點 B 的坐標;

2)若,求點 D 的坐標;

3)在(2)的條件下,點 N x 軸上,直線 AB 上是否存在點 M,使以 MN,D,E 為頂點的四邊形是平行四邊形?若存在,請直接寫出 M 點的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BC >AC,點DBC上,且CA=CD,∠ACB的平分線交AD于點F,EAB的中點.

1)求證:EF∥BD

2)若∠ACB=60°,AC=8,BC=12,求四邊形BDFE的面積.

查看答案和解析>>

同步練習(xí)冊答案