【題目】有七名同學(xué)站成一排照畢業(yè)紀念照,其中甲必須站在正中間,并且乙、丙兩位同學(xué)要站在一起,則不同的站法有( )
A.240種
B.192種
C.96種
D.48種
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 兩條直線被第三條直線所截,同位角相等B. 垂直于同一直線的兩直線平行
C. 相等的角是對頂角D. 平行于同一直線的兩直線平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【新知理解】
如圖①,點C在線段AB上,圖中共有三條線段AB、AC和BC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是線段AB的“巧點”.
線段的中點__________這條線段的“巧點”;(填“是”或“不是”).
若AB = 12cm,點C是線段AB的巧點,則AC=___________cm;
【解決問題】
(3) 如圖②,已知AB=12cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動:點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動,點P、Q同時出發(fā),當其中一點到達終點時,運動停止,設(shè)移動的時間為t(s).當t為何值時,A、P、Q三點中其中一點恰好是另外兩點為端點的線段的巧點?說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了深化課程改革,省實驗積極開展校本課程建設(shè),計劃成立“增量閱讀”、“趣味數(shù)學(xué)”、“音樂舞蹈”和“戲劇英語”等多個社團,要求每位學(xué)生都自主選擇其中一個社團,為此,隨機調(diào)查了初中部分學(xué)生選擇社團的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):
選擇意向 | 增量閱讀 | 趣味數(shù)學(xué) | 音樂舞蹈 | 戲曲英語 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據(jù)統(tǒng)計圖表的信息,解答下列問題:
(l)求本次抽樣調(diào)查的學(xué)生總?cè)藬?shù)及a、b的值:
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有5000名學(xué)生,試估計全校選擇“音樂舞蹈”社團的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】16,如圖,在平面直角坐標系中,有若干個橫坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根據(jù)這個規(guī)律,第2017個點的坐標為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等邊△ABE和等邊△ACD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說明理由.
【深入探究】
(2)如圖2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分別以AB、AC為邊向外作正方形ABNE和正方形ACMD,連接BD,求BD的長.
(3)如圖3,在(2)的條件下,以AC為直角邊在線段AC的左側(cè)作等腰直角△ACD,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過點B作EB⊥AB,交CD于點E.若DE=6,則AD的長為( )
A.6
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按圖填空,并注明理由.
⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D
證明:過E點作EF∥AB(經(jīng)過直線外一點有且只有一條直線與這條直線平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代換).
⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解:因為EF∥AD(已知)
所以∠2=∠3.( )
又因為∠1=∠2,所以∠1=∠3.(等量代換)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因為∠BAC=70°,所以∠AGD=110°.
圖⑴ 圖⑵
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是等邊△ABC內(nèi)一點,連接PA,PB,PC,PA:PB:PC=3:4:5,以AC為邊作△AP′C≌△APB,連接PP′,則有以下結(jié)論:①△APP′是等邊三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正確的是 . (把所有正確答案的序號都填在橫線上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com