【題目】某縣在實(shí)施“村村通”工程中,決定在A、B兩村之間修一條公路,甲、乙兩個(gè)工程隊(duì)分別從A、B兩村同時(shí)開(kāi)始相向修路,施工期間,甲隊(duì)改變了一次修路速度,乙隊(duì)因另有任務(wù)提前離開(kāi),余下的任務(wù)由甲隊(duì)單獨(dú)完成,直到公路修通,甲、乙兩個(gè)工程隊(duì)各自所修公路的長(zhǎng)度y(米)與修路時(shí)間x(天)之間的函數(shù)圖象如圖所示.
(1)求甲隊(duì)前8天所修公路的長(zhǎng)度;
(2)求甲工程隊(duì)改變修路速度后y與x之間的函數(shù)關(guān)系式;
(3)求這條公路的總長(zhǎng)度.
【答案】(1)560米.(2)y=50x+160(4≤x≤16).(3)這條公路的總長(zhǎng)度為1800米.
【解析】
試題分析:(1)由函數(shù)圖象在x=8時(shí)相交可知:前8天甲、乙兩隊(duì)修的公路一樣長(zhǎng),結(jié)合修路長(zhǎng)度=每日所修長(zhǎng)度×修路天數(shù)可計(jì)算出乙隊(duì)前8天所修的公路長(zhǎng)度,從而得出結(jié)論;
(2)設(shè)甲工程隊(duì)改變修路速度后y與x之間的函數(shù)關(guān)系式為y=kx+b,代入圖象中點(diǎn)的坐標(biāo)可列出關(guān)于k和b的二元一次方程組,解方程組即可得出結(jié)論;
(3)由圖象可知乙隊(duì)修的公路總長(zhǎng)度,再根據(jù)(2)得出的解析式求出甲隊(duì)修的公路的總長(zhǎng)度,二者相加即可得出結(jié)論.
試題解析:(1)由圖象可知前八天甲、乙兩隊(duì)修的公路一樣長(zhǎng),
乙隊(duì)前八天所修公路的長(zhǎng)度為840÷12×8=560(米),
答:甲隊(duì)前8天所修公路的長(zhǎng)度為560米.
(2)設(shè)甲工程隊(duì)改變修路速度后y與x之間的函數(shù)關(guān)系式為y=kx+b,
將點(diǎn)(4,360),(8,560)代入,得
,解得.
故甲工程隊(duì)改變修路速度后y與x之間的函數(shù)關(guān)系式為y=50x+160(4≤x≤16).
(3)當(dāng)x=16時(shí),y=50×16+160=960;
由圖象可知乙隊(duì)共修了840米.
960+840=1800(米).
答:這條公路的總長(zhǎng)度為1800米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員各參加10場(chǎng)比賽,各場(chǎng)得分情況如圖,下列四個(gè)結(jié)論中,正確的是( 。
A. 甲運(yùn)動(dòng)員得分的平均數(shù)小于乙運(yùn)動(dòng)員得分的平均數(shù)B. 甲運(yùn)動(dòng)員得分的中位數(shù)小于乙運(yùn)動(dòng)員得分的中位數(shù)
C. 甲運(yùn)動(dòng)員得分的最小值大于乙運(yùn)動(dòng)員得分的最小值D. 甲運(yùn)動(dòng)員得分的方差大于乙運(yùn)動(dòng)員得分的方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=3,AD=8,點(diǎn)E為BC的中點(diǎn),連接AE,EF是∠AEC的平分線,交AD于點(diǎn)F,則FD=( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在6×8的網(wǎng)格圖中,每個(gè)小正方形邊長(zhǎng)均為1,原點(diǎn)O和△ABC的頂點(diǎn)均為格點(diǎn).
(1)以O為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′與△ABC位似,且位似比為1:2;(保留作圖痕跡,不要求寫作法和證明)
(2)若點(diǎn)C的坐標(biāo)為(2,4),則點(diǎn)A′的坐標(biāo)為( , ),點(diǎn)C′的坐標(biāo)為( , ),S△A′B′C′:S△ABC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,E是BD上的一點(diǎn),∠BAE=∠BCE,∠AED=∠CED,點(diǎn)G是BC,AE延長(zhǎng)線的交點(diǎn),AG與CD相交于點(diǎn)F.
(1)求證:四邊形ABCD是正方形;
(2)當(dāng)AE=3EF,DF=1時(shí),求GF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長(zhǎng)線上的一點(diǎn),∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長(zhǎng);
(3)求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖拋物線交軸于點(diǎn),交軸于 (在左),且;
(1)如圖,求拋物線的解析式;
(2)如圖,在第一象限內(nèi)拋物線上有一點(diǎn),且點(diǎn)在對(duì)稱軸的右側(cè),連接交軸于點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為,設(shè)點(diǎn)的橫坐標(biāo)為,求出與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)如圖,在(2)的條件下,在點(diǎn)右側(cè)軸上有一點(diǎn),且,連接,且與相交于點(diǎn),連接,點(diǎn)是線段的延長(zhǎng)線上一點(diǎn),連接,使,取中點(diǎn),在線段上取一點(diǎn),射線與線段相交于點(diǎn),連接,在線段上取一點(diǎn),連接,使得,若,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com