在平面直角坐標系中,已知點A(4,0)、B(﹣6,0),點C是y軸上的一個動點,當∠BCA=45°時,點C的坐標為 .
(0,12)或(0,﹣12)
【解析】
試題分析:設(shè)線段BA的中點為E,
∵點A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0)。
(1)如答圖1所示,過點E在第二象限作EP⊥BA,且EP=AB=5,
則易知△PBA為等腰直角三角形,∠BPA=90°,PA=PB=。
以點P為圓心,PA(或PB)長為半徑作⊙P,與y軸的正半軸交于點C,
∵∠BCA為⊙P的圓周角,
∴∠BCA=∠BPA=45°,則點C即為所求。
過點P作PF⊥y軸于點F,則OF=PE=5,PF=1,
在Rt△PFC中,PF=1,PC=,
由勾股定理得:,
∴OC=OF+CF=5+7=12。
∴點C坐標為(0,12)。
(2)如答圖2所示,根據(jù)圓滿的對稱性質(zhì),可得y軸負半軸上的點C坐標為(0,﹣12)。
綜上所述,點C坐標為(0,12)或(0,﹣12)。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com