【題目】如圖,在ABCD中,P是CD邊上一點,且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是_______.
【答案】24
【解析】試題分析:∵四邊形ABCD是平行四邊形,
∴AD∥CB,AB∥CD,
∴∠DAB+∠CBA=180°,
又∵AP和BP分別平分∠DAB和∠CBA,
∴∠PAB+∠PBA= (∠DAB+∠CBA)=90°,
在△APB中,∠APB=180°-(∠PAB+∠PBA)=90°;
∵AP平分∠DAB,
∴∠DAP=∠PAB,
∵AB∥CD,
∴∠PAB=∠DPA,
∴∠DAP=∠DPA,
∴△ADP是等腰三角形,
∴AD=DP=5,
同理:PC=CB=5,
即AB=DC=DP+PC=10,
在Rt△APB中,AB=10,AP=8,
∴BP==6,
,∴△APB的周長=6+8+10=24;
故答案為:24.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個最小方格的邊長均為1個單位,P1,P2,P3,…均在格點上,其順序按圖中“→”方向排列,如:點P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),….根據(jù)這個規(guī)律,求點P2018的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上
(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;
(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列生活現(xiàn)象中,屬于平移的是( 。
A.足球在草地上跳動
B.急剎車時汽車在地面上滑行
C.投影片的文字經投影轉換到屏幕上
D.鐘擺的擺動
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)設E是y軸右側拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為 ?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某學校在“國學經典”中新建了一座吳玉章雕塑,小林站在距離雕塑3米的A處自B點看雕塑頭頂D的仰角為45°,看雕塑底部C的仰角為30°,求塑像CD的高度.(最后結果精確到0.1米,參考數(shù)據(jù): ≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.
解答下列問題:
(1)如果AB=AC,∠BAC=90,當點D在線段BC上時(與點B不重合),如圖2,線段CF,BD所在直線位置關系為 ,數(shù)量關系為 .
(2)如果AB=AC,∠BAC=90,當點D在線段BC的延長線時,如圖3,(1)中的結論是否仍然成立,并說明理由。
(3)如果AB=AC,∠BAC是鈍角,點D在線段BC上,當∠ABC滿足什么條件時,CF⊥BC(點C、F不重合)畫出圖形,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com