【題目】計算及解方程:
(1)化簡:(5a2﹣ab)﹣2(3a2 ab)
(2)解方程: =1
(3)先化簡,再求值:3x2y﹣[2xy﹣2(xy﹣ x2y)+xy],其中x=3,y=﹣

【答案】
(1)解:原式=5a2﹣ab﹣6a2+ab=﹣a2
(2)解:去分母得:2(x﹣1)﹣(3x﹣1)=4,
去括號得:2x﹣2﹣3x+1=4,
移項合并得:﹣x=5,
解得:x=﹣5
(3)解:原式=3x2y﹣2xy+2xy﹣3x2y﹣xy=﹣xy,
當(dāng)x=3,y=﹣ 時,原式=1
【解析】(1)去括號,合并同類項,化為最簡形式即可 ;
(2)去分母,去括號,移項合并同類項,系數(shù)化為1即可 ;
(3)先去小括號,再去中括號,然后合并同類項,再代入x,y的值計算即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上離開原點(diǎn)4個長度單位的點(diǎn)表示的數(shù)是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過A(0,2),B(3,2)兩點(diǎn),若兩動點(diǎn)D、E同時從原點(diǎn)O分別沿著x軸、y軸正方向運(yùn)動,點(diǎn)E的速度是每秒1個單位長度,點(diǎn)D的速度是每秒2個單位長度.

(1)求拋物線與x軸的交點(diǎn)坐標(biāo);

(2)若點(diǎn)C為拋物線與x軸的交點(diǎn),是否存在點(diǎn)D,使A、B、C、D四點(diǎn)圍成的四邊形是平行四邊形?若存在,求點(diǎn)D的坐標(biāo);若不存在,說明理由;

(3)問幾秒鐘時,B、D、E在同一條直線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線l1;y=ax2+bx+c(a0)經(jīng)過原點(diǎn),與x軸的另一個交點(diǎn)為B(4,0),點(diǎn)A為頂點(diǎn),且直線OA的解析式為y=x.

(1)如圖1,求拋物線l1的解析式;

(2)如圖2,將拋物線l1繞原點(diǎn)O旋轉(zhuǎn)180°,得到拋物線l2,l2與x軸交于點(diǎn)B′,頂點(diǎn)為A′,點(diǎn)P為拋物線l1上一動點(diǎn),連接PO交l2于點(diǎn)Q,連接PA、PA′、QA′、QA.

請求:平行四邊形PAQA′的面積S與P點(diǎn)橫坐標(biāo)x(2x4)之間的關(guān)系式;

(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點(diǎn)H,使得HB=HA′?若存在,請求出點(diǎn)H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=12cm,BC=24cm,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積( )cm2

A.72
B.90
C.108
D.144

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點(diǎn)D、E.

(1)若∠A=40°,求∠DCB的度數(shù).
(2)若AE=4,△DCB的周長為13,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.

(1)將圖1中的三角板繞點(diǎn)O以每秒3°的速度沿順時針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,OM恰好平分∠BOC.①求t的值;②此時ON是否平分∠AOC?請說明理由;
(2)在(1)問的基礎(chǔ)上,若三角板在轉(zhuǎn)動的同時,射線OC也繞O點(diǎn)以每秒6°的速度沿順時針方向旋轉(zhuǎn)一周,如圖3,那么經(jīng)過多長時間OC平分∠MON?請說明理由;
(3)在(2)問的基礎(chǔ)上,經(jīng)過多長時間OC平分∠MOB?請畫圖并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,牧童在A處放牛,其家在C處,A、C到河岸L的距離分別為AB=2km,CD=4km且,BD=8km.

(1)牧童從A處將牛牽到河邊P處飲水后再回到家C,試確定P在何處,所走路程最短?請在圖中畫出飲水的位置(保留作圖痕跡),
不必說明理由.
(2)求出(1)中的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程(a+1x2+2x10是一元二次方程,則a的取值范圍是( 。

A.a1B.a>﹣1C.a<﹣1D.a≠0

查看答案和解析>>

同步練習(xí)冊答案