某中學(xué)為了綠化校園,計劃購買一批棕樹和香樟樹,經(jīng)市場調(diào)查榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.

(1)請問榕樹和香樟樹的單價各多少?

(2)根據(jù)學(xué)校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵樹不少于榕樹的1.5倍,請你算算,該校本次購買榕樹和香樟樹共有哪幾種方案.

 

【答案】

(1)榕樹和香樟樹的單價分別是60元/棵,80元/棵。

(2)有3種購買方案:

方案一:購買榕樹58棵,香樟樹92棵,

方案二:購買榕樹59棵,香樟樹91棵,

方案三:購買榕樹60棵,香樟樹90棵。

【解析】

試題分析:(1)設(shè)榕樹的單價為x元/棵,香樟樹的單價是y元/棵,然后根據(jù)單價之間的關(guān)系和340元兩個等量關(guān)系列出二元一次方程組,求解即可。

(2)設(shè)購買榕樹a棵,表示出香樟樹為(150﹣a)棵,然后根據(jù)總費用和兩種樹的棵數(shù)關(guān)系列出不等式組,求出a的取值范圍,在根據(jù)a是正整數(shù)確定出購買方案!

解:(1)設(shè)榕樹的單價為x元/棵,香樟樹的單價是y元/棵,

根據(jù)題意得,,解得。

答:榕樹和香樟樹的單價分別是60元/棵,80元/棵。

(2)設(shè)購買榕樹a棵,則購買香樟樹為(150﹣a)棵,

根據(jù)題意得,,

解不等式①得,a≥58,解不等式②得,a≤60,

∴不等式組的解集是58≤a≤60。

∵a只能取正整數(shù),∴a=58、59、60。

∴有3種購買方案:

方案一:購買榕樹58棵,香樟樹92棵,

方案二:購買榕樹59棵,香樟樹91棵,

方案三:購買榕樹60棵,香樟樹90棵。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•云南)某中學(xué)為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)請問榕樹和香樟樹的單價各多少?
(2)根據(jù)學(xué)校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵樹不少于榕樹的1.5倍,請你算算,該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)請問榕樹和香樟樹的單價各多少?
(2)根據(jù)學(xué)校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵樹不少于榕樹的1.5倍,請你算算,該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:云南 題型:解答題

某中學(xué)為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)請問榕樹和香樟樹的單價各多少?
(2)根據(jù)學(xué)校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵樹不少于榕樹的1.5倍,請你算算,該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年云南省八地市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某中學(xué)為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)請問榕樹和香樟樹的單價各多少?
(2)根據(jù)學(xué)校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵樹不少于榕樹的1.5倍,請你算算,該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

同步練習(xí)冊答案