【題目】丁老師為了解所任教的兩個(gè)班的學(xué)生數(shù)學(xué)學(xué)習(xí)情況,對數(shù)學(xué)進(jìn)行了一次測試,獲得了兩個(gè)班的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析,下面給出了部分信息.
①A、B兩班學(xué)生(兩個(gè)班的人數(shù)相同)數(shù)學(xué)成績不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B兩班學(xué)生測試成績在80≤x<90這一組的數(shù)據(jù)如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B兩班學(xué)生測試成績的平均數(shù)、中位數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根據(jù)以上信息,回答下列問題:
(1)補(bǔ)全數(shù)學(xué)成績頻數(shù)分布直方圖;
(2)寫出表中m、n的值;
(3)請你對比分析A、B兩班學(xué)生的數(shù)學(xué)學(xué)習(xí)情況(至少從兩個(gè)不同的角度分析).
【答案】(1)見解析;(2)m=81,n=85;(3)略.
【解析】
(1)先求出B班人數(shù),根據(jù)兩班人數(shù)相同可求出A班70≤x<80組的人數(shù),補(bǔ)全統(tǒng)計(jì)圖即可;
(2)根據(jù)中位數(shù)的定義求解即可;
(3)可以從中位數(shù)和方差的角度分析,合理即可.
解:(1)A、B兩班學(xué)生人數(shù)=5+2+3+22+8=40人,
A班70≤x<80組的人數(shù)=40-1-7-13-9=10人,
A、B兩班學(xué)生數(shù)學(xué)成績頻數(shù)分布直方圖如下:
(2)根據(jù)中位數(shù)的定義可得:m==81,n==85;
(3)從中位數(shù)的角度看,B班學(xué)生的數(shù)學(xué)成績比A班學(xué)生的數(shù)學(xué)成績好;
從方差的角度看,A班學(xué)生的數(shù)學(xué)成績比B班學(xué)生的數(shù)學(xué)成績穩(wěn)定.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市雙城同創(chuàng)的工作中,某社區(qū)計(jì)劃對1200m2的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo),由甲、乙兩個(gè)施工隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為300m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天.
(1)甲、乙兩施工隊(duì)每天分別能完成綠化的面積是多少?
(2)設(shè)先由甲隊(duì)施工x天,再由乙隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)關(guān)系式.
(3)若甲隊(duì)每天綠化費(fèi)用為0.4萬元,乙隊(duì)每天綠化費(fèi)用為0.15萬元,且甲、乙兩隊(duì)施工的總天數(shù)不超過14天,則如何安排甲、乙兩隊(duì)施工的天數(shù),使施工費(fèi)用最少?并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形內(nèi),在對角線AC上找到一點(diǎn)P,使PD+PE的和最小,則這個(gè)和的最小值是( 。
A.B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn)探究:如圖1,矩形和矩形位似,,連接,則線段與有何數(shù)量關(guān)系,關(guān)系是__________.直線與直線所夾銳角的度數(shù)是__________.
(2)拓展探究:如圖2,將矩形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)角,上面的結(jié)論是否仍然成立?如果成立,請就圖2給出的情況加以證明.
(3)問題解決:若點(diǎn)是的中點(diǎn),,連接,,在矩形繞點(diǎn)旋轉(zhuǎn)過程中,請直接寫出長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中(每個(gè)小正方形的邊長都為1個(gè)單位),在平面直角坐標(biāo)系內(nèi),△OBC的頂點(diǎn)B、C分別為B(0,﹣4),C(2,﹣4).
(1)請?jiān)趫D中標(biāo)出△OBC的外接圓的圓心P的位置,并填寫:圓心P的坐標(biāo)為 ;
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△OB1C1;
(3)在(2)的條件下,求出旋轉(zhuǎn)過程中點(diǎn)C所經(jīng)過分路徑長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,BC=3,動點(diǎn)P從B出發(fā),以每秒1個(gè)單位的速度,沿射線BC方向移動,作△PAB關(guān)于直線PA的對稱△PAB' ,設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(s).
(1)若AB=2.
①如圖2,當(dāng)點(diǎn)B' 落在AC上時(shí),求t的值;
②是否存在異于圖2的時(shí)刻,使得△PCB’是直角三角形?若存在,請直接寫出所有符合題意的t值?若不存在,請說明理由.
(2)若四邊形ABCD是正方形,直線PB'與直線CD相交于點(diǎn)M,當(dāng)點(diǎn)P不與點(diǎn)C重合時(shí),求證:∠PAM=45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)計(jì)劃對1200m2的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個(gè)施工隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且甲、乙兩隊(duì)在分別獨(dú)立完成面積為300m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天.
⑴ 甲、乙兩施工隊(duì)每天分別能完成綠化的面積是多少?
⑵ 設(shè)先由甲隊(duì)施工x天,再由乙隊(duì)施工y天,剛好完成綠化任務(wù),求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1與△OAB是關(guān)于點(diǎn)P為位似中心的位似圖形.
(1)在圖中標(biāo)出位似中心P的位置,并寫出點(diǎn)P的坐標(biāo)及△O1A1B1與△OAB的位似比;
(2)以原點(diǎn)O為位似中心,在y軸的左側(cè)畫出△OAB的另一個(gè)位似△OA2B2,使它與△OAB的位似比為2:1,并寫出點(diǎn)B的對應(yīng)點(diǎn)B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京時(shí)間2020年5月12日9時(shí)16分,我國自主研制的快舟一號甲運(yùn)載火箭在酒泉衛(wèi)星發(fā)射中心發(fā)射成功.此次發(fā)射的“行云二號”01星命名為“行云·武漢號”,并通過在火箭箭體上涂刷“英雄武漢偉大中國”和“致敬醫(yī)護(hù)工作者群像”的方式,致敬武漢、武漢人民和廣大醫(yī)護(hù)工作者.如圖,火箭從地面L處發(fā)射,當(dāng)火箭達(dá)到A點(diǎn)時(shí),從位于地面R處雷達(dá)站測得AR的距離是6km,仰角為42.4°;1秒后火箭到達(dá)B點(diǎn),此時(shí)測得仰角為45.5°求這枚火箭從A到B的平均速度是多少(結(jié)果精確到0.01)?(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com