【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C坐標(biāo)為(﹣1,0),點(diǎn)A的坐標(biāo)為(0,2).一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)B,C,反比例函數(shù)y=的圖象也經(jīng)過(guò)點(diǎn)B.
(1)求反比例函數(shù)的關(guān)系式;
(2)直接寫出當(dāng)x<0時(shí),kx+b﹣<0的解集.
【答案】⑴y=;
⑵.
【解析】
(1)作輔助線,證明△BCD≌△AOC,根據(jù)已知求出點(diǎn)B的坐標(biāo)(-3,1),點(diǎn)C的坐標(biāo)(-1,0),即可求出反比例函數(shù)的解析式,
(2)根據(jù)反比例函數(shù)和一次函數(shù)圖像的性質(zhì),找到直線在雙曲線下方的圖像即可解題.
解:⑴過(guò)B做BD垂直于x軸于D,如下圖,
∵點(diǎn)C坐標(biāo)為(-1,0),點(diǎn)A的坐標(biāo)為(0,2),
∴tan∠ACO=2,則OC=1,
在Rt△AOC中AO=OCtan∠ACO=2,AC=,(勾股定理),
∴sin∠CAO=,
在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,則BC=AC=易知△BCD≌△AOC ,則∠BCD=∠CAO,
∴sin∠BCD=sin∠CAO,
在Rt△BCD中BD=1,CD=2,
∴B的坐標(biāo)(-3,1),代入y=,解得:m =-3,
∴反比例函數(shù)的關(guān)系式y=;
C坐標(biāo)為(-1,0),待定系數(shù)法解得一次函數(shù)的關(guān)系式y=,
⑵不等式kx+b-<0的解集即是不等式kx+b<的解集,不等式kx+b<可把它看成是一次函數(shù)的關(guān)系式與反比例函數(shù)的關(guān)系式y=,則kx+b<的意思是在圖象上去找一次函數(shù)在反比例函數(shù)下方的x的范圍即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某電信公司提供了A,B兩種方案的移動(dòng)通訊費(fèi)用y(元)與通話時(shí)間x(元)之間的關(guān)系,則下列結(jié)論中正確的有( )
(1)若通話時(shí)間少于120分,則A方案比B方案便宜20元;
(2)若通話時(shí)間超過(guò)200分,則B方案比A方案便宜12元;
(3)若通訊費(fèi)用為60元,則B方案比A方案的通話時(shí)間多;
(4)若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是145分或185分.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AM是⊙O直徑,弦BC⊥AM,垂足為點(diǎn)N,弦CD交AM于點(diǎn)E,連按AB和BE.
(1)如圖1,若CD⊥AB,垂足為點(diǎn)F,求證:∠BED=2∠BAM;
(2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE=2CN;
(3)如圖3,AB=CD,BE:CD=4:7,AE=11,求EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對(duì)應(yīng)邊BC.CE、EF在同一條直線上,連接BG,分別交AC、DC、DE于點(diǎn)P、Q、K,其中S△PQC=3,則圖中三個(gè)陰影部分的面積和為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙C 經(jīng)過(guò)原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn) A 與點(diǎn) B,點(diǎn) B 的坐標(biāo)為 ,M 是圓上一點(diǎn),∠BMO=120°.⊙C的圓心C的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長(zhǎng)度;
(2)設(shè)直線BC與y軸交于點(diǎn)M,點(diǎn)C是BM的中點(diǎn)時(shí),求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過(guò)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)E是拋物線對(duì)稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫字是學(xué)生的一項(xiàng)基本功,為了了解某校學(xué)生的書寫情況,隨機(jī)對(duì)該校部分學(xué)生進(jìn)行測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).根據(jù)調(diào)查結(jié)果繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,回答以下問(wèn)題:
(1)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該校共有2000名學(xué)生,估計(jì)該校書寫等級(jí)為“D級(jí)”的學(xué)生約有 人;
(3)隨機(jī)抽取了4名等級(jí)為“A級(jí)”的學(xué)生,其中有3名女生,1名男生,現(xiàn)從這4名學(xué)生中任意抽取2名,用列表或畫樹狀圖的方法,求抽到的兩名學(xué)生都是女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com